
   Many years ago I was taking a digital logic class in college, learning about the primitive circuits that were at the heart of a computer’s operation. 
The class was clear enough and the subject interesting enough that I really wanted to put what I had learned into action. I envisioned designing and 
building a computer from those simple circuits into a completed (though slow and simple, by modern standards) computer. I decided to build it using 
“virtual circuits” inside a computer. It would be a simulated computer. I had two reasons for doing this.

1) I am not an electrical engineer and wanted to focus on the computer’s own internal logic. I did not also want to have to learn engineering on the 
side, just for what amounted to an (involved) hobby. So this would allow me to concentrate my efforts on how the logic components worked 
together, not on figuring out power levels and resistors and transistors and so forth. A cheat, I know.

2) Even more importantly, building a computer was going to take thousands and tens of thousands of switches. While 
I wanted to build this thing myself,  I didn’t want to purchase premade chips with my switches already made into logic 
components and ready for me to wire up. (Though that would still be a lot of hard work.) At the same time I did want 
to finish this thing before the end of the next millennium. Just to build 1K of memory, for example, was going to 
require 7168 components called gates. I didn’t want to make hundreds of breadboard circuits that looked like this!

   So doing it virtually inside a computer seemed like the best situation. I’d still get to design it from the ground up, but I 
could focus on what I wanted to focus on. And because it was simulated, once I designed a component I could just 
make copies and hook them together however I wanted.

   Of course, nothing is that simple. Components like multiplexors, demultiplexors, were easy enough. I even implemented NOR-based flip-flops and 
eventually a 1K addressable memory module. But, eventually real life caught up with me- a move, a new job, and other things. That, and I had hit a 
roadblock in the increasing number of problems cropping up with the component simulations and their signal timing. I had to focus on other things 
for a long while.

   Fast forward a number of years. I found this book, The Elements of Computing Systems: Building a 
Modern Computer from First Principles. It was exactly what I needed. In the book, you actually do build a 
computer in exactly the manner I had wanted (and for much of the same reasons.) The authors don’t tell 
you how to do it, how things should connect together, or anything like that. Instead, they give the 
specification for specific components and it is up to you to come up with them. They describe how those 
components should work together, their behavior for specific circumstances, and it is you who comes up 
with a design that does exactly that. In short, I would do the work I wanted to do, but with some help 
knowing what I was going to need next or how things should work.

   This is the result of my work. After I designed and tested my computer, I wanted to document what I had 
done, the design decisions and the things I had learned. From there, I just found myself imagining I was 
explaining to someone else exactly how to design a computer the way I did, the thought processes and the 
choices I made.

   This project is, in many ways, like building a combustion engine from scratch. Your engine will not rival or 
even equal those in vehicles today. But making one yourself is still an experience. You find yourself looking 

at early models, the ones those first engineers designed, and find yourself nodding your head as you now understand the decisions they made. You 
also marvel at what they were able to accomplish in those early days. 

   If you would like that experience yourself, or to try any of this out on your own, the authors have a website, www.nand2tetris.org, where you can 
find the book, assistance, and all the software tools you would need to build the computer yourself.

It has been a great experience. Enjoy! Copyright 2013. Ian Ohlander. All Rights Reserved



A final circuit we can 
create makes use of an 
iron rod wrapped with a 
wire and connected to a 
battery. When this occurs, 
the iron rod becomes a 
magnet. When the circuit 
is broken and electricity is 

no longer flowing through the wire, the iron rod stops 
being magnetic. We can call this an electromagnet.

   We can use this electromagnet in our final circuit.

   We’ll first put in a single circuit, as seen in the 
photograph of the switch circuit. But instead of using a 
normal switch, we’ll put one that is on a hinged-spring that 
keeps it closed. Thus the light is always on.

   Then we’ll put an electromagnet underneath the spring-
hinged switch, as in the diagram. We’ll hide the switch 
circuit and expose to a user only the switch controlling the 
electromagnet. To a user, it will look like this.

  When we close the switch (b), 
the electromagnet pulls the 
latch open, breaking the circuit.
The light turns off. When we 
open the switch (a), the electro-
magnet shuts off and the spring 
pulls the switch circuit closed 
and the light turns on.

   For a user, what has happened is that closing the circuit 
(setting it to 1, on, or true) outputs an off (0, false). But 
when the user opens the circuit (sets it to 0, off, or false) 
the circuit outputs an on (closed, 1, true).

    We call this a NOT circuit. It outputs the opposite of 
its input. This is also called negation.

   We start with a simple switch circuit. This circuit consists of a light 
bulb, a battery, wires, and a switch. When the switch is closed, the 
connection to the battery is complete and electricity can flow into the 
light bulb. The light comes on. When the switch is opened, the circuit 
is broken and the light goes off. Very simple. But that switch is why a 
computer can do what it does. On and off can also be called true and 
false, 1 and 0, closed and open.

   We can take this circuit and modify it slightly to create a new type 
of circuit. We will use two switches and put them parallel to each other.

   We can also take these two switches and put them in series with each other.
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Switch Circuit

   Notice that the circuit is complete as long as at 
least one switch is on. If the 1st switch OR the 2nd OR 
both are on, then the light is on. 
   We used of the word OR describing this circuit. 
This is an OR Circuit.
   It outputs light (or on, true, or 1) when either switch 
or both is on (or true, on, or 1). It doesn’t output light 
(off, false, or 0) only when both switches are off (or 
false, 0).

   This circuit has 2 switches in a row. So the only way the circuit is 
complete and the light can be on (true, 1) is if BOTH switches are 
on (true, 1). 
   The 1st switch AND the 2nd switch have to be on (true, 1) for the 
light to be on (true, 1). 
   We call this an AND Circuit.

All of these circuits are called GATES. We have an AND gate, OR gate, 
and NOT gate. We constructed them using parts and technology that has 

been around since the 1800s to illustrate how basic they are.

Hinged-spring

(a) (b)



   When digital engineers want to design a digital circuit that performs some function, they don’t concern themselves yet with how it physically works (at first). This is 
because the actual components can be implemented in numerous ways. 
What matters to the designer is the their behavior.

   With all of these possible implementations, it 
becomes clear that the designer doesn’t care how
the logic components work.
   As far as he is concerned, they are abstracted  
away as black boxes that can be connected 
together in specific ways. 
   Instead, he uses symbols for them. The chart 
(below) shows the symbols for many different gates 
and their behavior.
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   As we saw in the 
previous page, logic 
gates can be made 
using magnets and 
switches.

   Here, we see the 
AND gate, with a 
focus on one of the 
switches controlling 
it.

Logic gates can also be made from a literal 
or simulated network of neuron (nerve) 

cells arranged in a particular way to create 
the very same behavior. 

   Neurons transmit a signal if the voltage 
sum of the incoming signals is greater than 
a certain threshold (T).
   Here, Cell A is configured so that it will 
not fire a charge down its axon unless it 
receives a total incoming charge of at least 
2. This only occurs if both inputs are at 
least 1. Thus, this neural network behaves 
as an AND gate.

It has even been recently discovered 
that neurons themselves may 
contain protein structures inside 
them that behave as logic 
components like AND gates.
(http://journals.plos.org/ploscompbiol/
article?id=10.1371/journal.pcbi.1002421)

The inputs are at the bottom. Only when 
both are on (true, 1) does the structure 

output an on (true, 1).

But switches can also be implemented on silicon 
chips by exploiting the chemical properties of silicon, 
as well as silicon mixed (or doped) with other 
elements. Here is one example of how to do this.

  This switch has its two ends (or terminals, drain and 
source) connected to the N-type doped sections of 
silicon. Above the N-type doped section is a terminal 
called a Gate of P-type silicon. If we let the Gate’s 
charge be negative, electrons are repelled from 
flowing from source to drain (bottom). But when 
positive voltage is applied to the Gate terminal, it 
stops repelling (or blocking) the flow from source to 
drain. The two terminals are then connected, closing 
the circuit, and current flows.
   This non-mechanical switch can be wired up into 
logic gates in the same way as mechanical switches.

(excellent video of another type of silicon switch: http://
www.youtube.com/
watch?v=IcrBqCFLHIY&list=PLkahZjV5wKe_dajngssVLffa
Ch2gbq55_)

-

+



   We can now take basic logic components and hook them up 
in useful ways.

(a) If you set A=0 and B=1, then the top AND 
gate gets the inputs NOT A (which is 1) and B 
(which is also 1). 1 AND 1 is 1. 
   On the other hand the bottom AND gate gets 
an input of A=0 and NOT B (which is 0). 0 AND 
0 is 0. 
   The OR gate thus gets inputs 1 and 0. An OR 
outputs a 1 if either is 1, so this circuit outputs a 
1, or true, for when A=0 and B=1.

(b) The same thing (though opposite) happens 
when A=1 and B=0. It outputs a 1, or true.

(c) BUT, when A=1 and B=1, the top AND gets 
NOT A (0) as input and thus will output a 0. The 
bottom AND gets NOT B (0) as input, also 
outputting a 0. The OR gate thus takes inputs of 
0 and 0. 0 OR 0 is 0, false.

   The same thing happens when A=0 and B=0. 
The output of both AND gates is 0 and so the 
OR gate outputs 0.
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At this point, we notice some interesting 
functionality of the AND and OR gates.

   Note that when one of the inputs on an AND gate 
is 0, then it doesn’t matter what the other one is. 
The output will be 0. In example (c), both AND 
gates outputted a 0 because one of the inputs was 
0.
  This is such an important thing to keep in mind 
that we want to write it down (where we use x for 
AND).

A x 0 = 0
That looks pretty familiar. In multiplication, any 
number multiplied by 0 is 0. In Boolean algebra 
(the math used to describe digital logic) we use x 
for AND and that is partially the reason. The other 
reason is this:

A x 1 = A
In Boolean algebra that is also true. 

This makes sense. If A=0 then 0 x 1=0. If A=1 then 
1 x 1=1. Whatever A is is outputted from the AND 
gate, provided the other input is 1.
   Thus, if we have a couple of AND gates and want 
to only activate one of them, all we need to do is 
AND that one with a 1 and the others with 0's. This 
is useful in conjunction with the properties of an OR 
gate.

   Notice that the OR gate acts like a funnel. It will 
output A OR B. In Boolean algebra, the OR 
function is represented by +.

A + 0 = A
   If OR has 2 inputs, A and 0, it will output A (as in 
examples (a) and (b)).
   If used with an AND, where one AND gate has 
been activated and one deactivated, it can be used 
to route a signal.

   If we put a 1 on the top AND gate and 0 on the 
bottom then A is outputted.

1

A
A

AA x 1
1

A

B x 0
0

B 0

A+0

   For example, let’s say we want to create a circuit that tests to 
see if both inputs are opposites- that is, if A is 1 and B is 0 or if A 
is 0 and B is 1. This could be useful, as we’ll see later.
To begin with, we can create a small table (called a truth table) 
to show the behavior we want.

So to summarize, when 
A=0 AND B=1 we output a 1.
Similarly, when
A=1 AND B=0 we output a 1.
We can write that together as the 

statement:
(A=0 AND B=1) OR (A=1 AND B=0)=1

   It looks like we could almost draw that with just logic symbols 
of AND and OR if we could figure out how to write A=0 and B=0. 
   Well, what we’re saying is A=0 is true and B=0 is true. “True” 
just means 1, right? So we are saying A=0 is 1 and B=0 is 1. 
A=0 outputs a 1 and B=0 outputs a 1.
   Looking at our logic symbols on the previous page, we see a 
logic component that does just that: a NOT gate. When A=0 the 
output is 1. So we can substitute A=0 and B=0 with NOT A and 
NOT B and it will mean the same thing. 
   So we can write out our original statement as:

(NOT A AND B) OR (A AND NOT B)=1
If we now use logic symbols instead of letters, we get the 
following circuit diagram.

   This circuit does exactly what we want. It is called an 
Exclusive-OR, or XOR GATE since it ORs mutually exclusive 
inputs.

   We can see it works by looking at our possible inputs.

NOT A AND B

A AND NOT B

NOT A
A

NOT B

OUT

A AND NOT B

NOT A AND B

OR

B
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   The routing circuit we created on the previous page works 
pretty well. But you have to remember to manually turn on or 
off each AND gate to control the routing. It would be nice if we 
could automatically select whatever gate we wanted without 
having to manually change each one.

   We can do this by introducing a new input, select (sel). 

   This circuit uses the routing circuit but adds a NOT gate. The 
NOT gate functions in the same way as the one on the XOR 
gate. 

When select=0, the top AND gate is activated (by the NOT 
select=1) and the bottom AND gate is deactivated (Bx0=0). 
The OR gate receives A+0, which we recall means just A.

   But when select=1, then the top AND is set to A x 0 (=0) and 
is deactivated. The bottom gate, though is B x 1 (=B). OR 
receives as inputs 0+B (=B) and thus B is the output. 

This kind of circuit is called a Multiplexor (Mux) and 
can be represented by this symbol.
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   This circuit can be reversed so that a single input can be 
routed into 2 possible directions. The symbol (and function) of 
this circuit is:

  It seems to work very similarly (though opposite) to the 
Multiplexor. But actually it is a bit simpler. We don’t need to 
funnel outputs, so we can throw away the OR gate. Instead, 
we’ll have one input and two outputs (a,b) and we’ll just use 
select to activate the AND gates for the path out we want.

  When select=0, then the path
to A is activate by the NOT gate,
while the path to B is deactivated.

When select=1, then the path to
A is deactivated, while the path to 

B is activated.

This circuit is called a Demultiplexor (DeMux), since it does the 
opposite of a Multiplexor (Mux).
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sel In x 1

In x 0

in

0

in

0
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In x 1

0
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in
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Muxes and DeMuxes can be extended to handle more than 2 
inputs or outputs. They can also be extended to handle more 
than 1 bit numbers as inputs or outputs
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   As we saw, Multiplexors take in 2 streams of 
bits and will output whichever stream is 
selected, a or b. This is a 2:1 Mux.
   We can extend this to 4, 8, 16, etc Muxes by 
using more than one Mux and another extra 
selection bits to activate the output.
   To see how this works, let create a 4:1 MUX. We will need 
two 2:1 Muxes. Now, we will need to select 4 possible outputs. 

   Remember that the select bit only gave us two choices: 0 or 
   1. So for 4 choices, we need 2 numbers (called bits). We can 
   see this works by listing all the choices we get from two bits in 
   the chart. We also add in what we’d like them to select.
   This chart gives us a clue as to how to make this work.

We start by taking our 2:1 
Muxes and stacking them. 
We then hook up all 4 
inputs. Looking at the chart,
when select-bit-1 (sel1)=0,
the output should be a or
b (from the top Mux). But 
when sel1=1, then the 
output should be either c
or d (from the bottom Mux). 
That should ring a bell. If we use two AND gates that we can activate 
depending on sel1, and then OR the result, we can select between the top and 
bottom mux based on sel1.

   If we look at the chart again, we see that when sel1=0, sel0 can be used to 
select between a and b. Similarly, when sel1=1, sel0 selects between c and d. 
We can depict this 4:1 MUX with
this symbol.
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   We can use this same method to create an 8:1 MUX. All we need to do is 
replace the 2:1 Muxes with 4:1 Muxes, connect in 8 inputs (a-h), add another 
select bit (sel2) to activate the top or bottom Mux output, and route the 
remaining 2 selection bits (sel0 and sel1) into the 4:1 Muxes.

   This works exactly the same way as the 4:1 Mux. sel0 and sel1 select a-d
from the top Mux and e-h from the bottom Mux. sel2 then activates output of 
the top or bottom Mux.

   We can represent this 8:1 Mux with this symbol.

   This same technique can be used to make any 2n:1 Mux. Just add two base 
Muxes (2n-1:1), connect in all but the first select bit, use the first select bit to 
activate the outputs of the top or bottom, and then OR the output.
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sel1     sel0     out
  0           0         a
  0           1         b
  1           0         c
  1           1         d
  1           0         c
  1           1         d



   We remember that a Demultiplexor is the opposite 
of a multiplexor. It takes in 1 signal and will route 
it 2 possible ways, depending on the sel signal. 
The symbol of it makes this behavior clear.

   However, sometimes we need to route a signal more than simply 2 possible 
directions. We can make a 1:4 Demux to handle this in the same way that we 
made a 4:1 Mux. First we stack our 1:2 Demuxes and connecting in our input.

Since we have 4 possible outputs, we will need 2 
select-bits (sel1,sel0). As we did with the larger 
muxes, we’ll route the sel0 bits to both demuxes. 
Thus, sel0 will allow us to select a and c, or b and 
d.

That just leaves us to figure out how to use sel1 to 
select between the top and bottom demuxes. 
When we made the larger muxes, we used sel1 to 
activate the outputs of either the top of the bottom 
muxes using AND gates. We can do the same 
thing here, but with a slight difference.

   We could put an AND gate on each demux’s outputs (a-d). For the top 2 ANDs, 
we’d route in NOT sel1 while for the bottom ANDs we route in sel1. Thus, when 
sel1=0, the top two outputs are activated (and sel0 will then select between a and 
b) (see below). When sel1=1, the bottom two AND gates will be activated, with sel0
then selecting c or d.

We can see that the top 2 AND 
gates do the same thing, as do 
the bottom 2 AND gates. They 
just activate the output of either 
the top demux (a,b) or the bottom 
demux (c,d). The circuit behaves 
exactly as the chart says it should.

But while this works, we are using  
a lot of AND gates, one for each  
output (a-d). A 1:4 demux will use 
4 AND gates. A larger  demux, 
like 1:8, will then use 8 AND 
gates.  Extra AND gates mean 
higher costs, less physical space 
available, more power 
consumption and higher heat 
output. Let’s fix this.
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   To get around the AND gate problem, we do something else. We can 
deactivate the top or bottom demux by deactivating the INPUTS instead. They 
both have a single input. If we put an AND gate there, along with sel1, we can 
control which demux will output the input and which will just output 0's.

      Notice that by moving the AND gates to control the inputs of the 1:2 
demuxes, we still are able to control which demux is activated, but we just cut 
the number of AND gates in half. 

   The beauty of this is that we can repeat it exactly for any 1:2n demux. For 
example, to create a 1:8 demux (one input going out 8 possible directions) we  
replace the 1:2 demuxes with 1:4 demuxes. We add another selection bit (sel2). 
We take sel0 and sel1 and route them into both 1:4 demuxes and put sel2 into 
the AND gates at the inputs of the 1:4 demuxes.
   That’s it!

   If we had put the AND gates at the outputs of the demuxes, we would have 
had to use 8 AND gates. This method required only 2.
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   Up to now, we have been able to create multiplexors and demultiplexors that allow 
us to route bits in different directions. The symbols of them makes this clear.

   But one problem we have is that this flow of information, or data, is only 1 bit. The 
input of a demultiplexor is either a 0 or a 1, while the multi-inputs of a multiplexor are 
also ultimately one bit that is either 0 or 1.
   It would be much better if we could route a large number of bits (say 16), such as 
this:

   The good news is that doing this is actually quite easy. We’ll do it with 2:1/1:2 Muxes/
Demuxes for data 4 bits wide. But the method used is exactly the same for the larger 
Muxes/Demuxes and for data any number of bits wide.
   Let’s say we want to make a 4 bit 1:2 Dmux like this:
Notice that at it’s root, our input of 0111 is just 4 bits wide.
So that means we’ll just need 4 1:2 Dmuxes and then route
the appropriate input/output bits into the Dmuxes.

We then route sel into all 4 Dmuxes.
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 That’s all there is to it. The 1st Dmux takes care of the 1st input bit, the 2nd takes 
care of the 2nd input bit, and so on. Output bits for a are connected one at a time 
and the same with b. Since we want the a or b output of each Dmux at the same 
time, the same selection bit is used on all the Dmuxes. Thus, when sel=0, the 4 
a-output bits receive the n-input bits. When sel=1, the 4 b-output bits receive the 
n-input bits.
   If we wanted to handle more output channels, we just add more Dmuxes and 
hook it up. And if we wanted this to be n-bit wide 1:4 or 1:8 Dmuxes, we would 
just use 1:4 or 1:8 Dmuxes as the core Dmuxes for each bit, We’d have to set 
up the output bits (a-d, or a-h), as well as route the selection bits (sel-n) into 
each Dmux. But all of that is easy enough.
   And it works just the same for Muxes.

   This should be pretty self-explanatory. The inputs on each Mux handles 1 bit. 
The selection bit sends the input out either a or b. The outputs of each Mux is 
arranged in the correct order.

   Here are our 2 examples
of 16 bit 1:2 Dmux and 2:1 Mux

   Just as with Demuxes, to make an n-bit 4:1 or 8:1 Mux, we use one 4:1 or 8:1 
Mux for each individual bit. We connect up the selection bits to each Mux, and 
then we capture the output.

   Again, here are examples of a 
16 bit 1:4 Dmux and 4:1 Mux
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   Usually, the word binary scares people off. But it is just another number system-a 
way to represent numbers. Now it may surprise people when they hear there are 
different ways to represent numbers, so we’re going to look at a simple example.

“We will meet up at 1400 hours.”
   That may be seem familiar. We call it military time. It means “2pm”. Why are there 2 
different ways to say 2pm? Because our day lasts 24 hours. In normal everyday use, 
we use a base-12 number system for time. A day begins at midnight and, every 60 
minutes, we increment the hour. 10am. 11am. 12pm, But then right after 12:59:59pm, 
we restart our count as 1:00:00pm. So the number system refers to how many digits it 
will allow before it “rolls over,” in this case 12, and then the count restarts. But military 
time uses a 24 hour a day number system. So once 12:59:59 pm hits, the hour count 
continues to increment, becoming 13:00:00 (“13 hundred hours”). No AM or PM. Just 
a continual increase in hours until 23:59:59, at which time the count finally “rolls over” 
or restarts at 00:00:00 (“zero-hundred hours”).
   We don’t go to 10 (or 100) before restarting the count. We go to 12 or 24. With 
minutes and seconds, we go to 60. We have 60 seconds=1 minute and 60 minutes=1 
hour. We may remember a quarter was $.25. But when counting time, a quarter hour 
was 15 minutes.
   We don’t have 10 or 100 day months. We have 28-31 day months, making 12 
months for the entire year, at which time the count of days (it’s the 31st day of the 
month) and the count of months (it’s the 12th month, December) restarts, while the 
year (2013) increments. We do the same with conversions between ounces, quarts, 
and gallons, or inches, feet, yards, and miles.
   The point is, we using different number systems all the time, and though conversion 
can seem annoying, we are used to them. We know that it’s 12 inches to a foot and 
5280 feet is 1 mile and 4 quarts to a gallon.
   All these number systems of 10, 12, 24, 30, 360 and so on, are remnants of different 
cultures and how they counted. We get our time counting from the Babylonians and 
our linear measurement from the British.
   But except for special counting, like time or measurement, in general most of the 
world uses a base-10 number system. Remember that refers to how many numbers 
you count before you “roll over” and restart. That means that we count 10 digits before 
we increment the next position. 
   We have only the digits 0-9 and their position, which we can use to represent any 
number.                         For example: 1,679,935,500.000049

   So if we say 233, we mean:
two-hundred thirty-three

Writing that out more clearly, we are saying:
(2 x 100) + (3 x 10) + (3 x 1)

   Each position stands for 1, 10, 100, 
1000, etc. While we don’t consciously do
this anymore, it’s how we learned it in 
school. For example, this (right) comes  
out of 2nd grade math book.
   Because values of each position (tens, 
hundreds, etc) are powers of 10, we say 
that it is a base-10 number system. We 
can make this clearer by writing this:

(2 x 102) + (3 x 101) + (3 x 100)
   Again, while that looks complex, it is just writing down mathematically what you 
do in your head all the time. We only have 10 digits (0-9), at which point we “roll 
over” to 0, while incrementing the next largest column. Look at what happens in 
the one’s column when we add and exceed 9.

30

   But while 10 seems special to us because we have 10 fingers and 10 toes and 
thus seems natural, there is really nothing unique about it. As we considered 
earlier, other cultures throughout history have used (and even we use) different 
number systems.
   As we have seen, digital logic relies on just 2 possible binary digits (or bits): 0 
and 1. So instead of going all the way up to 9 before “rolling over” to the next 
position value, binary numbers only go from 0 to 1 before rolling up. So how do 
we represent numbers with just 2 bits?

The same way we did with 10. Each column will 
represent a power of 2. 0 or 1 will go into each 
column, representing how much of that 
power of 2.

                   For example, 1101 in binary means:
Which we can break down to

(1 x 23) + (1 x 22) + (0 x 21) + (1 x 20)=
(1 x 8) + (1 x 4) + (0 x 2) + (1 x 1)=

8+4+0+1=
13

   Any decimal (base-10) number can be represented as a binary (base-2) 
number, just as 1 foot is also be 12 inches. The number, or distance, is the 
same. What we call it is the only difference.
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          What about Sum? We notice that it is only 1 when either A=0 and 
B=1 OR A=1 and B=0. That may not look familiar, but we built a 

          circuit a while ago that did that. It is called an XOR (Exclusive-OR 
          gate).

   If we compare the truth tables of AND and XOR next to Carry 
and Sum we see they are the same. So what does this mean? We can create a 
circuit that adds! The circuit doesn’t know what it is 
doing. It is just performing logical operations. But 
we interpret its results as addition. 
 That’s it! This circuit (right) adds two 1 bit numbers, 
A and B, and gives us the Carry and Sum. 
   But we want to be able to add more than 1 bit
numbers. So how do we add larger numbers like 
this?

         Most of this would follow the rules we already know (0+1, 1+1, etc). 
       But in the highlighted column, we see a 1+1+1. There was already a 
       carry in of 1 from the previous column and now the sum 1+1 made 

another. We know 1+1+1 = 3. How do we represent 3 in binary? 
          Well, 3 = 2+1, right? So we put a 1 in the two’s column

                       and a 1 in the one’s column. Binary 3 is 11 (left). 
                          Easy enough then. That’s exactly how we deal with
that kind of carry. We put a 1 in the column we are in, and then 
carry a 1 into the next column.
   So how does that translate into an addition circuit? Well notice 
that we are actually doing 2 additions. We first add A and B. Then
we take that sum and add it to our carry from the previous column. 2 additions 
means 2 of our adders. We’ll call them 1st and 2nd. A+B will go into 1st. 1st’s Sum 
will go into 2nd’s A input. Our Carry-in from the previous column will go into 2nd’s 
B input. 2nd’s sum will be our total sum. If 1st generates a Carry-out OR 2nd 

generates one, then we have a Carry-out. 

   Logically that makes sense. Let’s use our example problem of 1[Carry-in]+1[A]+1[B].  
We first add 1[A]+1[B]. Carry-out[1st]=1 and Sum[1st]=0. A[2nd]=Sum[1st]=0 and 
B[2nd]= Carry-in=1. Carry-out[2nd]=0 and Sum[2nd]=1.
Carry-out[FA]=1[C-out 1st]+0[C-out 2nd]=1. Sum[FA]=1[2nd]. 1[Carry-in]+1[A]+1[B]=11
   It works. To add larger numbers, we can treat each Full Adder (FA) like a 
column. The 1st column will have a Carry-in of 0. The Carry-out of each FA will 
go into the Carry-in of the next FA.

   Computers compute. They do all kinds of math. But at their core, they are simple 
adding machines. Every other mathematical function they do derives from simple 
addition. Multiplication, division, exponentiation, integration, linear algebra, vector 
calculus- for a computer, it all comes down to a hardware component that can add and 
software using complicated algorithms, or recipes.
   Our next step then will be to build an adder. Since computers use binary numbers, 
we need to add in binary. To do this, let’s review how we add using our normal 
decimal numbers.
   Since each column in our numbers simply represents a power of ten- 1, 
10, 100, 1000, etc)- we just add up each column. In this example, we are 
adding 4+8. Both the 4 and 8 are in the one’s column. Their sum is 12. 
But the 1 in 12 is actually 10, so we need to put that 1 in the ten’s column 
(we call that a carry). The ten’s column already has a 0+0, so the sum in the ten’s 
column is actually 1+0+0. The total sum becomes 12.
   That seems like it was made unnecessarily complicated, but the fact is, that is what 
we learned in 2nd grade. We just do it automatically now. Our point, though, is to look 
at the actual process, because we do the exact same thing in binary addition. We add 
each column and if there is a carry we add it to the next column.

 Here we add 1+0. The 1 in the one’s column adds to the 0, leaving a 1 in the 
 one’s column. We had zeroes in the two’s column, and 0+0=0.
    But that’s not very useful. Let’s add 1+1. So that means we have
 two 1's in the one’s column. Remember, in binary, we don’t have a 

digit for 2 (just as above, we didn’t have a digit for 12.) So that means we put 
a 0 in the one’s column and carry a 1 into the next column, the two’s column. 
That makes sense though. We are saying 1+1=2. And we just put a 1 in the two’s 
column and a 0 on the one’s column, meaning one 2 and 0 ones: 

(1x2) + (0x1)= 2+0=2.
                     It’s just the same as decimal addition.
     So far we have considered 1+0=1 and 1+1=10 (binary 2). 0+1 is exactly the same 
as 1+0, so that also is 1. And we know that 0+0=0. So we have: 0+0=0, 1+0=1, 
0+1=0, and 1+1=10. Looks like we have covered all possibilities for adding in a single 
column. 
   We’ll list them all here at right. We’ll add zeros to
show there was no carrying for almost all adding.

         Let’s rearrange above into the chart left. We’ll turn it 
      sideways so it looks familiar. For the answer let’s call the 
      column on the right (the one’s column) Sum. We’ll call 
      the column on the left (the two’s column) Carry. And let’s 
      label our two digits we are adding as A and B. 

   So, with our A and B inputs, we have two outputs: Carry and Sum. This looks like a 
truth table for some logic gates. Let’s look at the Carry output first. 
Notice that it is only 1 when both A and B are 1. If we write that again, 
we can say Carry=1 when A=1 AND B=1. That AND jumps out at us. 
In binary addition, a Carry output is just an AND gate! 
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We built a 1 bit adder that allows us to add two numbers, A and B, 
along with a Carry-In. Now, in order to add larger numbers, we just 
create an array of these 1 bit full adders, one for each bit of the numbers 
we are adding. We can view each adder as an addition column that then 
passes any Carry-Outs on to the next column. The example addition of 
0010 + 0111 (2+7) = 1001 (9) can help us see this. 
   The adder for the one’s column (furthest right) 
is the first one, so the Carry-In is set to 0. This 
makes sense since addition of the first digits in 
the one’s column (whether Decimal or Binary) 
don’t have anything to carry in. 
   Then, that adder’s Carry-Out is routed into the 
next adder’s Carry-In. We continue for as many columns we want to be 
able to add. Each adder gets 1 bit from the two numbers, A and
B, we want to add, as well as the Carry-In from the previous adder 
(except for the first one, as we said.)
   We can do this for 4 columns and make a 4-Bit Adder. We then can 
repeat the process with four 4-Bit adders, and make a 16-bit Adder. If 
we repeat that process, we can make Adders for any width of numbers 
we want to add. We just have to remember to put 0 in the first column’s 
Carry-In.

b3 b2 b1 b0

a3 a2 a1 a0

4 Bit Adder

1 Bit Full Adder

SUMCARRY 
Out

CARRY 
IN

ba

1 Bit Full Adder

SUMCARRY 
Out

CARRY 
IN

ba

1 Bit Full Adder

SUMCARRY 
Out

CARRY 
IN

ba

1 Bit Full Adder

SUMCARRY 
Out

CARRY 
IN

ba

a3

b3

a2

b2

a1

b1

a0

B0

Carry In

SUM3Carry Out SUM2 SUM1 SUM0

   a3 a2 a1 a0
+ b3 b2 b1 a0

co s3 s2 s1 s0

a15-a12 a11-a8 a7-a4 a3-a0a[15-0]

16 Bit Adder 4 Bit Full Adder

s3-s0CARRY 
Out

CARRY 
IN

b3-b0a3-a0

b15-b12 b11-b8 b7-b4 b3-b0b[15-0]

4 Bit Full Adder

s3-s0CARRY 
Out

CARRY 
IN

b3-b0a3-a0

4 Bit Full Adder

s3-s0CARRY 
Out

CARRY 
IN

b3-b0a3-a0

4 Bit Full Adder

s3-s0CARRY 
Out

CARRY 
IN

b3-b0a3-a0

s15-s12 s11-s8 s7-s4 s3-s0co s[15-0]Carry Out

   a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
+ b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 a0

Carry in
0

0

1

1

0

0 1 0 0 1

0

0

1

1

1

0

1

0

0

Copyright 2013. Ian Ohlander. All Rights Reserved



   So computers compute.  We already said that. And an adder sits at the core of that. 
But it doesn’t work alone. We’ve worked with AND gates a lot. And NOT gates. We can 
make 16-bit versions of these. A 16-bit AND gate will AND two 16-bit numbers together 
and output the result. A 16-bit NOT gate will NOT each bit of a 16-bit number and output 
the result.

   It may be hard to believe, but a 16-bit Adder, a 16-bit ANDer, and some 16-bit NOT 
gates,16-bit 2:1 multiplexors and 16-bit 1:2 demultiplexors are all that is needed to create 
the core component of a CPU. The CPU is the Central Processing Unit of a computer, its 
brain. It is the unit responsible for executing each line of computer code. 
   Everything we do with computers (and that includes cell phones)- surfing the internet, 
watching YouTube videos, texting, Facebooking, editing pictures, swiping our fingers on 
the screen, moving the mouse pointer, listening to music- all occurs at it’s deepest level 
as computer code. Computer code, or machine language, basically tells the CPU exactly 
what to do as well as where to put the results or data. That’s it. Of course, there are 
layers and layers of code “objects” that make our sending an email or clicking a link 
seem so simple. But at its root, the only thing a computer ever does is follow basic 
instructions of simple arithmetic and moving data around. 
   And we have already created the pieces necessary to do the first part of that: simple 
arithmetic. Of course, it’s not as simple as that. We want to create a component that will 
take in 2 numbers (x and y) and, depending on the instructions we give it, will add, 
subtract, AND and so on. So it will have to be able to adjust its output based on what we 
tell it we want. Surprisingly, though, we can do this fairly easily by controlling the flow of 
x and y using demultiplexors and multiplexors.
    We will call this component an Arithmetic Logic Unit 
(ALU). It will allow us to input two 16-bit numbers (x,y) 
and six control bits. It will output the result (out), as well
as two flags indicating whether out was zero (zr) or a 
negative number (ng). In the end, we want it to be 
a component that looks like the picture at the right.
   The control bits instruct the ALU to perform 3 simple operations: add, AND, NOT. But 
when done in various combinations, the resulting output function can be much more 
complex. The control bits are:

   These control bits are fairly explanatory. zx means zero x. When zx=1, x is set  to 
0000 0000 0000 0000, no matter what it initially was. nx means NOT x. This occurs 
when nx=1. Looking at the example (b) above, you can see that if x was 1101 1001 
1101 1010 then NOTing it would turn it into 0010 0110 0010 0101. zy and ny do the 
same to y when they are 1. f means function. When f=0, we AND x and y (Example (a) 
shows what that looks like). When f=1 we add x and y. no means NOT out, just like nx
and ny and only happens when no=1. When set to the control bits to 1 in various 
combinations, they instruct the ALU to perform many functions.

(a)  16-bit AND (b)  16-bit NOT

 It may seem strange that little things like turning x or y into zeroes or NOTing 
them, coupled with operations like ANDing or adding them can let us perform 
all these functions. So let’s look at just a couple of examples.
   Let’s say we want to add x and y. Looking at the appropriate row in the 
chart tells us that we need to set the control bits to the following.

   That’s pretty easy. We don’t do anything to x or y or the output. The only 
control bit we set to 1 is f, which means we add.
   Let’s try subtraction. Let’s assume that x=0000 0000 0000 1011 (11) and 
y=0000 0000 0000 0010 (2). We want the output function to be x-y. 
out should result in 0000 0000 0000 0101 (9), which is 11-2. The chart tells 
us the bits are:

   We’ll follow the step for each control bit.
nx=1  NOT x Not x =1111 1111 1111 0100
f = 1  out=NOT x+y     out =1111 1111 1111 0100

+ 0000 0000 0000 0010
1111 1111 1111 0110

no=1 NOT out Not  out=0000 0000 0000 1001
   Notice that out=0000 0000 0000 1001 (9), which was we wanted. But why 
does that work? Why do the other control bit settings result in all those 
output functions? 
   It has to do with Boolean Algebra, the math that governs the logical 
operations AND, OR, and NOT. These logical operations can be manipulated 
in a similar way to regular algebra. So after we decide on what function we 
want (like x-y) we can algebraically work backward from that to figure out 
what our initial operations (AND, NOT, add) for x,y, out need to be. That’s 
already done and is in the chart.
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   Now that we understand the behavior we want our ALU to support, let’s figure out how 
to use the components we’ve already created to make that happen. Here are our control 
bits again, for reference.

   Let’s just take the first control bit and figure out what that means. When zx=0, we 
need to leave x alone. It needs to stay the same. But when zx=1, we want to turn 
whatever x was into 0.
   We can draw that out to help us visualize it 
better. The diagram makes this pretty clear. But
it also looks sort of familiar, conceptually. We
have an incoming line, x, and depending on the
value of zx, we have two things happen to x.
Either it is left alone or it is modified.

A 16-bit Demultiplexor happens to do this. We have 1 input (in),
1 selection bit (sel), and two output channels (a,b). We can put 
x into in, zx into sel. Output a can be the channel out to where 
we leave x alone. Output b can then be the channel out where 
we turn x into 0000 0000 0000 0000.

   In order to turn x into all zeroes, we can use an AND gate. Recall that, if you put a 0 
into an AND gate, then it will output 0 no matter what its other input is. Putting all this 
together:

This works. When zx=0, the x input 
goes out output a. When xz=1, x input 
goes out channel b, where it is then 
ANDed with 0. x thus becomes 0. 

   Note that now, though, we have 2 x channels (x,0). That is a problem. There are still 5 
more control bits left. Two of them (nx, f), still need to act on x. It doesn’t make sense to 
try to have to NOT x and AND/add on two x channels, especially since only one of 
those channels is active at any given time. So it would be nice to select just the line that 
we want and discard the other. 
   We can do this with a 16-bit Multiplexor. We will reuse zx, this time to allow 
out only the channel 
we want (x unchanged,
or x=0). We’ll set zx =1 
to see it work.

   We can do exactly the same for the control bit nx (NOT x), using a 16-bit NOT gate.
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   At one point, we are going to be connecting those modules (A and B) together. 
The x-output of A will go into the x-input of B. And as you may guess, we can 
implement zy and ny in exactly the same way. (The diagrams are literally the 
same, except that wherever the x appears, replace it with a y. We will call them 
modules C and D.)
   So let’s look at what we need to do to implement the f control bit function. 
When f=0, we want x AND y and when f=1, we want x + y. So we know we will 
need a 16-bit AND gate as well as a 16-bit Adder. Both of these need to take x
and y as inputs. Since both of them are taking x and y as inputs, all f needs to 
control is whether to pass through the output of the 16-AND gate or the 16-Bit 
Adder. We can do that with a 16-bit Multiplexor and f into sel.

         As we can see, f
     selects between the
     outputs of the16-Bit 
     AND gate and the 
     16-bit Adder.

          Below, we see 
      an exanple when 

f=1.
   Finally, no will 
take output and 
leave it alone if it is
0. But if no=1 it will 
select a Demux-
Multiplexor comb-
ination module (F) 
(exactly the same 
as modules A-D, so we will not diagram it) to NOT output.
   There are two other things we need from this ALU. We need 2 Status Flags. 
One flag, ng, will tell us if output is negative. We don’t need to go into an 
extended discussion about how negative numbers are represented in binary. 
The explanation is rather involved. Instead, we will just accept that the Most 
Significant Bit (MSB) of a binary number is the sign. The MSB is the bit furthest 
left of a binary number.
   For example, in the number 1000, the MSB is in the 4th column from the right, 
and is 1. When MSB=1, the number is negative. When MSB=0, the number is 
positive. So we just set ng=MSB and we are done the negative indicator flag.
   The other flag, zr, will tell us if output is zero. We can do this by taking all the 
bits of output and put them into a NOR gate. A NOR gate only outputs a 1 when 
all it’s inputs are 0. If output=0, then NOR output=1, We can set zr=NOR 
output.
   That’s it! We now have an ALU that will perform all the logical operations 
specified by the control bits in the chart. And as we previously saw, various 
combinations of these control bits will perform numerous functions.
   Now, we just put all our modules together.

  f module (E)

b
sel

a

out
16 2:1 
MUX

16 AND

16 Bit Adder
a

b
sum

x

f

y

output

  f module (E) 
       when f=1, selecting x+y  

b
sel

a

out
16 2:1 
MUX

16 AND

16 Bit Adder
a

b
sum

x

f

y

output

1

1
x+y

x+y

Copyright 2013. Ian Ohlander. All Rights Reserved



no module (F)

ny module (D)

nx module (B)

zy module (C)

Inputs

x

y

zx zynx ny f noControl Bits

zx module (A)

bsel

a

in

16 bit
1:2 

DMUX
sel

out
16 bit
2:1 

MUX

a

b

16-Bit AND
0

  f module (E)

b
sel

a

out
16 2:1 
MUX

16 AND

16 Bit Adder
a

b
sum

bsel

a

in

16 bit
1:2 

DMUX
sel

out
16 bit
2:1 

MUX

a

b

16-Bit AND
0

bsel

a

in

16 bit
1:2 

DMUX
sel

out
16 bit
2:1 

MUX

a

b

bsel

a

in

16 bit
1:2 

DMUX
sel

out

16 bit
2:1 

MUX

a

b

bsel

a

in

16 bit
1:2 

DMUX
out

16 bit
2:1 

MUX

a

b
sel

16 WAY NOR gate

f(x,y)
zr ng

zero  neg

15 3 2 1

out
Status 
Flags

    Here is our completed ALU. (Let’s ignore the arrows, as well as boxes edged in red, orange, blue and green.)    
    We’ve taken all the modules we created (A-F) and put them together. We first link up our x-input modules (A output to B
input) as well as our y-input modules (C output to D input). We then take both the x and y outs of B and D and route them 
into the function module E. E has both a 16-bit ANDer and a 16-Bit Adder, so x and y both go into them. Finally, E output 
goes into module F. Each module takes in a single control bit (zx, nx, zy, ny, f, no) that selects which path thru the module 
to allow.
   We also then look at the NOR of all 16 bits of the output to see if it is zero and set the zr flag accordingly, as well as the 
MSB of the output to the ng flag.
   Let’s look back at our example problem we did earlier

x= 0000 0000 0000 1011 (11)
y= 0000 0000 0000 0010   (2)

 We set our control bits, based on our chart, to allow for out = x – y: 010011
We can follow the x and y inputs as they pass through each module using the arrows. The output of each module is also 
shown in color edged boxes.
   Our output comes out as: 0000 0000 0000 1001 (9). 11 - 2 = 9, so our ALU worked perfectly. We can do the same with any 
of the operations in our chart.
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1111 1111 1111 0110

0000 0000 0000 1001

0000 0000 0000 1001              (9)

0000 0000 0000 1011    
(11)

MSB
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   A computer needs to remember information. It needs to allow for retrieval and storage of that information. Doing this with the usual gates 
(AND, OR, etc) doesn’t seem feasible. Up to now, a simple circuit takes in one or more inputs and, based on the way things are connected 
together and the rules of logic that govern each gate, outputs an answer. Look at the example of an AND gate (right). We have two inputs. 
Change the inputs and the output (A AND B) changes instantly. There is no memory of any previous A AND B computations.

   But we can get creative and try connecting an output back into an input. We can connect two NOT gates together -which amounts to not changing
the input. NOT (NOT X) = X- and then loop the output of the last one back into the first one. 
   It doesn’t seem like it does much. Sure, it “remembers” what it was holding. But there’s no way to get any information into it. It’s a start though. By 
looping back an output to an input we can get some kind of memory behavior. 

   Based on that concept, lets look at this circuit (left). This is similar to the loopback with NOT gates, but with some differences. We have 
2 inputs, instead of 1: S(et) and R(eset). Each NOR gate outputs a value: Q and NOT Q (!Q). We are using NOR gates because they 
have very specific behaviors. They only output a 1 when both a=b=0 (the opposite of an OR gate). To see how this helps us, we need to 
figure out what it does. Let’s look at how this circuit behaves both when Q=0 (white) and Q=1 (red). To differentiate the NOR gates, we’ll 
refer to the top as NOR1 and the bottom as NOR2. To help us with this, we are going to be using our NOR truth table (below).

The output that we want to focus on is Q. Q is the data-holding bit.

   The bottom line of all this is that we now have a circuit that will hold onto a value, which we can read from Q. As long as S and R don’t 
change, Q doesn’t change. If Q was 0, then it stays 0. If Q was 1, it stays 1. But when we we put a 1 on R(eset), Q goes to 0. When R goes 
back to 0, Q stays at 0. When we put a 1 on S(et), Q goes to 1. When S goes back to 0, the Q stays at 1. (We never make both S and R
equal one, since it causes Q to alternate between 0 and 1.) We now have a 1 bit memory circuit. We call this an S-R Latch, since it latches 
onto data. 

NOR Truth 
Table

a

b
a x b

R
Q

S
!Q

0

Notice we set S=1. 
Immediately, the change 

propagates. 
NOR2 now has 1 and 0 as 
inputs and outputs 0. !Q=0.

NOR1 has inputs of 0's, 
outputting 1.

NOR1 has inputs of 0's, 
outputting 1. Q becomes 1.

NOR1 has inputs of 1's, 
outputting 1. !Q becomes 0.

Q stays 1.

When R=S=0, NOR1 inputs 
are 0's. Q stays 1. NOR2 

inputs stay 1 and 0. !Q stays 
0.

Notice we set R=1. 
Immediately, the change 

propagates. 

Right at this moment, Q=1. 
With no input on R or S, that 
doesn’t change. Q holds a 1.

NOR1 outputs a 0, changing 
Q to 0. Q now holds 0.

NOR2 has as 0's as input, 
so it ouputs a 1. !Q holds a 1 

now. 

NOR1 now has 1's for its 
inputs. It continues to output 

a 0. Q holds onto the 0. 

When R=0, NOR1's inputs are 0 and 
1, so it continues to output 0. Q 

holds onto 0.  NOR2's inputs are 0's 
so !Q=1. As long as R=S=0, Q=0 

and nothing changes.

Right at this moment, Q=0. 
With no input on R or S, that 
doesn’t change. Q holds a 0.

11

0

11

10 0

1

To see this animated go to:
http://en.wikipedia.org/wiki/File:R-S_mk2.gif
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0 0 0 0 0 0

01 1 1

0

0

0 0 0 0 0 0

01 1 1 1



Solution: We can take care of the “stabilization” issue 
with this circuit. We simply add 2 more AND gates to the 
inputs of the SR latch to use a clock pulse with the inputs. 

    A clock pulse is an oscillating signal (alternating between 
0 and 1). The signal stays low (0), for some time t and then 
goes high (1) for some time t. We need to make sure that t
is long enough for the memory circuit to stabilize. 

   Thus, while the pulse is low (0) the S and R stay disabled 
at 0 for time t, (thus making no changes to Q) allowing the 
data to settle to a stable state. But the circuit can be read at 
any time. (This can pose it’s own problem, as we may get 
bad data before the circuit settles down, but this is fixed by 
putting all memory circuits on the same clock. Thus they 
are never loading data from another memory latch before 
that latch has stabilized. They are in sync.)

   This D(ata) latch will hold the data it is given for as long 
as we want. We can read it at any time. If we want to write 
to it, we set L(oad) to 1. The data will only be written in 
when the clock pulses. Since we are only interested in Q, 
we ignore !Q.

   While this S-R latch is great at remembering one bit 
of information, there are some issues with this design.

Problem 1: We want to make sure that we 
only write to the memory when we need to update it. 
We want it to hold data and make that data available 
at any time. But we only want to write data when it needs to change. That way 
we don’t accidently overwrite it.

Solution: We can add 2 AND gates to enable 
inputs S and R. We’ll call it L(oad)/E(nable).If 
it is 0, the R and S inputs are 0 and the data 
doesn’t change. But if E(nable)/Load is set to 
1, then R and S inputs are active and will set 
or reset the SR latch. 

Problem 2: Setting S=1 and R=1 at the same time is too easy. And that 
will result in Q constantly flipping from 1 to 0 and back again, never latching onto 
anything. Plus, we have to deal with 2 inputs, complicating the interface it 
exposes to the outside world.

Solution: We can take a single input (D) and a NOT gate. NOT D goes into R
and D goes into S. When we want to 
write we set E(nable)/L(oad)=1 and
then we set D=1. The latch is loaded 
with 1. If we want to write a 0, we set 
D=0. If we want the latch to just hold 
the data, we set E(nable)/L(oad)=0.

Problem 3: If you’ll recall, when we set S or R to 1, there was a brief 
period where NOR1 and NOR2 propagated their new results out until the circuit 
stabilized. Because there is some “stabilization” time we need to wait for, we 
only want to write at specific and known intervals. We need to make sure the 
stabilization has occurred before we write again.

R
Q

S
!Q

R
Q

S
!Q

E

R
Q

S
!Q

E

D
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R

Q

S

E

D

x MHz
!Q

LOW

0

0

R

Q

S

E

D

x MHz
!Q

Clock
Pulse

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0}

Stabilization Time t



   We can take that same design and use a 16-bit 1:8 Dmux/8:1 Mux to address a block of 8 
16-bit registers with 8 words. We will use a 1-bit 1:8 Dmux as the “Load” Dmux. To address 8 
possible registers, we will need to use 3-bit wide addresses to select from the Dmuxes and 
Mux. Other than that, the design is exactly the same as the 2 register memory module.

   With the design above, we can input an address and read the date in that register on out. 
This example sets Address=010 (2). This activates the 3rd output on the MUX and the value 
inside Register 2 (1001 0100 1101 1111) is passed out. Because load=0, none of the 
registers do any loading, despite the Dmux passing the input data into Register 2. If load=1 
then 0000 0100 1010 0000 would have been loaded into Register 2 (when the clock pulsed). 
Now have an addressable bank of 8 16-bit registers (RAM 8).
   We can repeat this by replacing the 8 individual 16 bit registers with our new RAM 8 module 
(and adding 3 more bit address inputs to handle the new Mux/Dmuxes) to get a bank of 64 
(8x8). We can do this
again and again
(replace 8 with 64,
etc), always adding 
3 more address bits,
to get 512, 4k, 32k.

RAM 8
8 16-Bit Registers

  Once we have a 1-Bit Data latch, we can very easily create larger 
storage that handle more than 1 bit. We do this by stringing them 
together to each take in each bit of a larger number and wiring up the 
loads and clocks to the same incoming signal.

   For example, to create a 16-Bit Data Register we route each of 16 data 
bits in into 16 D latches, set a common L(oad) input and clock input. The 
output will be what is stored in those 16 D latches.

   We can now read and write 16-bits of data (called a 
“word”) to and from what we call a register (right).
   We can take this a step further. We want to create a bank of memory. 
We can visualize each register as a drawer in a cabinet. Each drawer is 
numbered (called an address) and can contain a 16-bit number. At any 
time, we want to be able to “open” and see what is inside one of those 
drawers using their address number. We also would like to be able to 
“open” and store numbers inside those drawers, using their address to 
choose which one. A Dmux-MUX combination module can do all this. 

This cabinet has 2 drawers, 
or memory locations. 

   By putting in an Address (0 or 1) on our Mux, we can read from either register. If we want 
to write, we put the Address into the Dmux and set Load=1. A second “Load” Dmux (top) 
handles activating Load on only the selected register by ANDing it with the Load signal.

01215

D0D1D2D15L

16 Bit Register

Data in

xx MHz

Data L
D

Q
L

Data L
D

Q
L

Data L
D

Q
L

Data L
D

Q
L

Data Out Q0Q1Q2Q15

16 Bit Register

LD Q

bsel

a

in

16 bit
1:2 

DMUX
sel

out

16 bit
2:1 

MUX

a

b

16 Bit Register

LD Q

bsel

a
in

1:2 
DMUX

Address

1

Data In

out

xx MHz

Load

16 Bit Register

LD Q

Load DMux

16 Bit Register

LD Q

16 Bit Register

LD Q

16 Bit Register

LD Q

16 Bit Register

LD Q

Address AD2 AD1 AD0 L

b

sel2

a

In 1:8 DMUX 
16 bit

c

d

sel1
sel0

f

e

g

h

1

sel2

a

In
1:8 

DMUX
1 bit

c
d

sel0

f
e

g
h

b

In

xx MHz

b

sel0

a

out8:1 MUX
16 bit

c

d

sel1

sel2

f

e

g

h

Load DMux

sel1

1001 0100 1101 1111

0 1 0 0
1001 0100 1101 1111

0000 0100 1010 0000

0

0

0

0

0 0

0

0

Ram 512
Load

Data in

Data out

Address (9 bits)

Ram 64
Load

Data in

Data out

Address (6 bits)

Ram 32768(32k)
Load

Data in

Data out

Address (15 bits)

Ram 4096(4k)
Load

Data in

Data out

Address (12 bits)
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Register 1

1

0 0

1

0

0

1

0

1

0

0

0

0

Register 1

Register 2

Register 7

Register 0



   At this point, we have built digital components, like muxes and adders, an ALU, as well as 
memory to store information. We need to ask the question, do those things make a 
computer? What is a computer? Is a computer a calculator? It calculates. Our ALU 
calculates (in a very limited fashion), depending on the control-bits we pass it. Is that a 
computer? 
   No. A computer does more than calculate. Nor does it simply store information. A 
computer follows instructions. No more and no less. It does exactly what it is told, but very 
very quickly. These instructions basically make up 3 types:

1) Calculation
2) Reading to and writing from memory
3) Making decisions. 

   That last part- making decisions- is what keeps a computer from being a simple calculator. 
It will follow instructions and make decisions based on the results of those instructions, input 
from a user, the state of a mouse or any other piece of data.
   Making decisions may sound overly complex, but we actually mean something very 
simple: Testing for a specific condition and acting on it. (“Does x-y=0?”, If ‘yes’, do one 
thing. If ‘no’, do another.) That’s it. That’s all a computer does. That’s all it ever does. 
Everything else we see a computer doing- displaying movies, letting us surf the internet, 
allowing us to write a letter- is simply the result of a computer doing those 3 things quickly 
over and over again in many different ways.
   At it’s core, a computer’s brain is the Central Processing Unit (CPU). It is made up of (not 
surprisingly) three major types of components:

1) ALU to perform simple calculations
2) Memory to store information
3) Instruction-following logic

   We have already completed the first 2 of those elements. This last one, the component to 
allow a CPU to follow instructions, is the most complex and most powerful. When put all 
together, we will have a fully-fledged computer able to execute any program we care to write 
for it. (Of course, this computer will not be easy to use at all, yet. All we have been working 
on is its brain. The friendly human-machine interface requires an OS and would take much 
more work- including designing the software to make it as easy to interact with as possible. 
We won’t go into any of that now.)
   Before we delve into the CPU, let’s first figure out what we mean by instructions. How 
does a computer follow instructions? We answer that by looking at an example involving 
regular human tasks. 
   Let’s say we wanted to tell someone how to make breakfast of boiled eggs and toast. We 
could do it pretty simply with the following steps:

1) Boil egg
2) Toast bread

   Of course, those are “high-level” steps. They each are made of more basic steps. If 
someone, for example, didn’t know how to boil an egg or make toast, we’d have to give 
more explicit instructions. We could expand step 1 to be:

1a) Put water in a pot
1b) Turn on heat
1c) Put egg in pot
1d) Wait 5 minutes 

   Those steps would allow anyone to make boiled eggs (though of course 
we left out the taking of the eggs off the stove and then peeling the shells 
off of them). The same is true if we define how to “toast bread”.
   Those step-by-step instructions make up a “recipe” or “algorithm”.  Our 
steps can be “high-level” (boil egg) or they can be “low level” (get pot, put 
water in, etc). 
   Computers just follow directions. Because they are machines, there is no 
“common sense” (how to boil water). Each step must be explicitly defined. 
Computers just follow those instructions, or an algorithm, of which each 
individual step is made up of lower level algorithms. For example, a 
computer game or word processor algorithm may look like this.

   Each one of those steps actually constitutes a number of lower-level 
algorithms. And those algorithms, in turn, are actually made up of still lower 
level algorithms. At its base, a computer, and more specifically, its brain 
the Central Processing Unit (CPU), is doing rudimentary calculations, 
reading from and writing to memory, and making decisions based on those 
calculations.
   Even things like getting user input from a keyboard or mouse or drawing 
on the screen is done by writing to or reading from memory (using an 
ingenious technique called “memory mapping”.)
   So our goal will be to now design a CPU that will do those 3 basic 
operations. It will “read” a binary code that will make up one single 
instruction. It will then do what that instruction says and then go on to the 
next one.
   To do that, we need to determine exactly how this CPU should work-
what it will need to read the instruction and follow it. We can do this by 
studying a very basic algorithm and seeing what we would need to follow it.

Get User input

Exit?

Main  Logic
-Format Text
-Spell Check
-Data Processing
-etc

Initialize Word Processor:
-Allocate memory
-Load files
-Build tables
-etc

Draw Text

No

Cleanup:
-Deallocate memory
-Close Files
-etc

Exit to O/S

Yes

Get player input

Exit?

Initialize game:
-Allocate memory
-Load files
-Build tables
-etc

Draw Screen

No

Cleanup:
-Deallocate memory
-Close Files
-etc

Exit to O/S

Yes

Main Game Logic
-Game AI
-Game Physics
-Scoring
-etc

Copyright 2013. Ian Ohlander. All Rights Reserved



   So let’s look at a literal example of what we need a computer to be able to do. From there, 
we can determine what kind of functions, or operations, the CPU must be able to perform. 
Once we have determined exactly what the CPU should be able to do, we can then get to 
figuring out how to implement it.

   Currently, our ALU only adds and subtracts. We are going to need it to multiply if it is 
going to be any use to us. So let us figure out how to teach a computer to multiply.

   What does multiplication mean, anyway? (a) 3 x 2 ; (b) 64 x 7. For (a) we have 
memorized that 3 x 2 = 6. For (b) we do long multiplication, carrying digits from one 
column to the next. But at its base, multiplication is just quick addition.

   3 x 2 = 3 + 3 or 2 + 2 + 2 64 x 7 = 64 + 64 + 64 +64 + 64 + 64 + 64  

    2 3's   or  3 2's 7 64's   
   Because we have usually memorized the first 12 multiplication tables and the technique of 
long multiplication, we generally forget that all multiplication is, and ever has been, is 
repeated adding.
   So if we had to direct a computer to multiply, what would we do? We could figure out and 
teach it the algorithm for long multiplication. In fact, that is the best way. It’s a very efficient 
algorithm (which is why we do it!). But let’s keep things easy. Instead, let’s just tell the 
computer to multiply by repeatedly adding. If we have 2 numbers, a and b, we tell the 
computer to add a, b times. If we had a x 6, we’d tell the computer to add a six times. It’s 
not efficient at all, especially for large numbers (imagine 82,123 x 120,125,634!) and so is 
called a naïve algorithm. But it’s a start and easy enough for us to figure out.
   So we have 2 numbers, a and b. We want to add a b times. If b was 85, we’d need to 
make sure that we added a exactly 85 times.. The best way would be to start a count of 
each addition of a (to some partial answer) and stop at b (85). Or, we would start at b (85) 
and count down: add a, b=b-1: 85-1=84; add a, 84-1=83… Of course, we don’t want to 
change a or b themselves, so it would be best to copy b somewhere and use that as a 
counter. We can describe this algorithm with a flow chart.

Given:  two numbers to multiply: a, b
one number to count: counter
product of a x b:                     answer

We can see the algorithm works when a=2 and b=3.
1: answer = 0; 
    counter = b = 3
2: answer = answer + a = 0 + 2 = 2
3: counter = counter – 1 = 3 – 1 = 2
4: counter = 0? NO - we jump to step 2.
2: answer = answer + a = 2 + 2 = 4
3: counter = counter – 1 = 2 – 1 = 1
4: counter = 0? NO - we jump to step 2.
2: answer = answer + a = 4 + 2 = 6
3: counter = counter – 1 = 1 – 1 = 0
4: counter = 0? YES - we continue to step 5.
5: answer = 6 ( 2 x 3)

    This algorithm will work for any 2 numbers (a,b) whose product can be 
encoded in binary using 16 bits (the answer has to be between (-32767 and 
32767). To do larger numbers we’d have to modify the algorithm. But for our 
purposes, it is sufficient, both in terms of utility (it multiplies 2 numbers) as 
well as to help us figure out what our CPU needs to do.
   So looking at our algorithm, we note that the CPU will have to be able to 
do the following:

I)   read and write from memory locations counter and answer (1)
II)  Do a simple calculation (2,3)
III) test the results of a calculation (4)
IV)  jump to another instruction based on that test (4)

   The ability to do these things requires a few things.
   a) all the instructions (steps in the algorithm) the CPU will be following 
need to be stored somewhere. We will call that our Instruction Memory. 

b) I requires the CPU to interact with memory locations. Thus, we will 
need a block of Memory (RAM). We will use addresses to read from and 
write to that memory. 

c) II can be done by the ALU. The ALU can perform simple calculations 
and its status flags will tell us things about the result. 

d) III will require us to do some testing of those status flags. 
e) IV requires that if the conditions are met (or are not met), the CPU will 

jump to another step in our Instruction Memory and continue executing 
instructions from that location. (We see this in the algorithm step 4, where 
we jump to step 2 if counter is not 0.) 
   To do that, we will need some kind of component to store the address of 
the next instruction step. We will call it the Program Counter. This allows 
us to jump by putting another instruction address in that Program Counter. 
This component will be the driving engine of our CPU. It is what will allow 
the CPU to perform its tasks, step by step. So we will spend some time on 
the motivation for this component and its design later.
    Visually, lets lay out all the components we are going to need so far

   Let’s notice that the Instruction Memory doesn’t take in any data. It is 
Read-Only Memory (called ROM). To load the computer with another 
program, we just “pop in” another ROM (think old Nintendo cartridges.) Our 
CPU has only 2 components for now (one just conceptual!). We will change 
that soon.

Set answer to 0;
Set counter to b

counter=0?

answer=answer+a

counter=counter-1

DONE
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NO
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5.
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For (b) we only    
show the 7 64's.

We could also have  
shown the sum of 64 
7's but there would 
have been no room. 

(a) (b)



   We are going to use 15 bits to address these 3 modules. We need to 
figure out how to do that so that we get data to/from the right module. The 
16K module will use 14 of the address bits while the 8K will only use 13 of 
the address bits. 

   If we blow up our Data Memory and look 
at the address in binary, we notice that bit 14
differentiates from the 16K and the 8K add-
resses. When bit 14 is 0, we can use the 16K 
module. When it is 1, we can use the bottom 
2 modules (the 8K and the 16 Bit register.) Then we look at bit 13 and we 
see that it can be used to select between the 8K and 16 Bit register.
   We thus can use bit 14 to select between Main and Screen/Keyboard 
memory, and then bit 13 to select between Screen and Keyboard memory. 
That means 2 Dmuxes to handle data flow in and 2 Muxes to handle data 
flow out. They will address with bits 14 and 13 respectively. As we did with 
our original memory modules, we will use “load” Dmuxes to handle write-
enabling our 3 modules.

   Bit 13 selects between screen and the keyboard on the B Dmux/MUX.  
Bit 14 selects between main memory and screen/keyboard on the A Dmux/
MUX. (For lack of room, we are not depicting the clock.)

   We can use the existing memory chips we made earlier to create the Instruction 
Memory. We’ll use the 32K RAM chip with Load permanently set to 0. This makes this 
Read-Only Memory (ROM). Our instructions will be stored in that ROM and each instruction 
will be read by the CPU. 
  Now we need to create the computer’s memory. We want it to be 24K. That means we’ll 
need 15 bits to address it, since 15 bits can handle up to 32,768 addresses. (14 bits will only 
address 16,384 addresses, which is not enough). To get 24K, we will stack a 16K and an 8K 
module (and one more, which we will explain in a moment.)
   It is critical that we realize that our memory will do more than simply store information and 
be a place for the computer to do work. Computers need to be able to interact with the 
outside world:  accept input from a keyboard, a mouse, a stylus or even a finger on a touch-
screen. They need to output images to a screen, a printer, or over a network card onto a 
network. And each interaction method should be simple and consistent across all devices. 
Reading input from a keyboard shouldn’t depend on one method of communication while 
reading input from a mouse depend on another.
   So computer designers came up with a strategy called “Memory Mapping”. The idea is 
that each device- from display to mouse- is “given” a block of memory. Writing data to those 
memory locations then “sends” information to a device. So to draw on the screen, specific 
data is written to the screen memory. Reading data from those memory mapped locations 
allows the computer to receive input. The keyboard’s memory map location contains a code 
for what key is being pressed.

   But we need to keep in mind, this memory is regular old memory. There is nothing special 
about it. It is the device that has the responsibility to interact with the memory. It is the 
screen (its hardware and driver) that is scanning the computer’s screen memory and 
updating its display many times a second to reflect what it found in that location. The 
computer is just storing information in that memory like it does in any other memory 
address. And the keyboard is constantly storing in the computer’s memory the ASCII code 
of the key that was pressed. The computer checks that location when it receives an interrupt 
signal, to see what was put in there, just as it checks any other memory location when it is 
instructed to.
   So we will use a single 16-bit register for the keyboard’s memory along with 16K and 8K.
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Address (15 bits)

15 Bit Address

14 13 Address Bits 12-0

Address Bits 12-0 (13)

Address Bits 13-0 (14)

0000 0000 0000 0000 0

0011 1111 1111 1111      16383
0100 0000 0000 0000      16384

0101 1111 1111 1111       24575
110 0000 0000 0000       24576

000 0000 0000 0000 0

011 1111 1111 1111      16383
100 0000 0000 0000      16384

101 1111 1111 1111       24575
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15 Bit Address 

RAM 16K
Main Memory

RAM 8K
Screen Memory

16 Bit Register
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   So we have our ALU for calculation and our memory modules, the 
Instruction ROM and Computer Memory, completed. All that is left is 
to design the CPU layout- its logic components that decode our CPU 
instructions from the 32K Instruction Memory ROM. Let’s look again 
at our multiplication algorithm and the requirements that it gave us 
for the CPU. Those requirements will allow us to create the logic 
decoding components.

I)   read and write from memory locations counter and 
answer

II)  Do a simple calculation 
III) test the results of a calculation 
IV)  jump to another instruction based on that test 

Let’s go through these one by one. 

Requirements I & II: The CPU needs to interact with memory 
locations and perform calculations. The CPU will use our 24K 
memory as an external storage. But performing operations regularly 
on external memory is a time intensive operation. Most algorithms 
require a lot of temporary storage for intermediate calculations (like 
the counter). Though we are talking milliseconds, accessing 
computer memory is relatively slow. Only accessing a mechanical 
device like a hard drive, cd-rom, or getting information over a 
network takes longer. The best solution is for the CPU to get a copy 
of what it needs from memory, do operations on it in some local 
storage, and then put the result back in external memory.
   So we are going to add two 16-Bit registers to our CPU. If we 
look at our ALU, we note that it has 2 inputs: x and y. So one 
register for the ALU-x-input and one register for the ALU-y-input 
fits nicely. We will call them D register and A register. D will hold 
data and go into ALU-x-input. A will hold either data or a memory 
address. Why?
   We need a way to get data into our CPU and memory. So we’ll 
make A be a single data input point. Remember that A will hold 
either data or an address to our memory (such as the screen 
memory). So we want to be able to directly load A with either an 
actual value or address in memory. 
    But we also may need to calculate an address or value and store 
it in A. Think back to our screen memory explanation. Each row 
contains 32 addresses. If we want to draw a word in the 2nd row, we 
need to take the top left corner’s address (16384) and then add 32 
to get to the position of the 1st 16 pixels in the 2nd row (16416).
    We could (somehow) put 32 in D and then 16384 in A and have 
the ALU add them together. We would then put the result back into 
A. Now A has the address of the screen where we want to draw. We 
could then write 0010 1001 0101 0001 (10577) at that address to draw 
this on the 2nd line of the top corner: 
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   So A will be loaded from:  (a) directly from our instruction, (b) from memory at the address 
stored in A, or (c) from the result of some ALU operation. How we can do that we don’t yet 
know, so we will also leave that as a magic grey box for now.

   Similarly, the ALU y-input should get input either directly (1) from the A register or (2) from 
the data stored in memory at the address in A (we’ll write that as Memory[A].) Let’s say we 
want to know what key was typed. We’d put our keyboard memory address (24576) into A, 
send that to memory-address-in, and then put the resulting output of Memory[24576] into the 
ALU-y-input. It would now contain the code of the typed key. This would be just the first step 
as we might then test to see what letter was typed. We haven’t yet decided on how to load y-
input in both ways, so we will leave it an orange magic box for now.

Notice, too, that we haven’t yet figured out how to get data into D (and from there into 
x-input on the ALU). So we have to do a little more planning to get this working.

   But at this point, we can look at our 16 bit instruction more closely. So far, it needs to load 
the A register from the instruction itself, as well as from another source (Memory[A] and 
ALU-out). It also needs to load the ALU y-input from 2 possible sources (A, Memory[A]). 
And yet we only have 16 bits per instruction to do all that. 16 bits may sound like a lot, but is 
actually pretty limited. But we can be clever about our instructions. 

   We can use our 16 bit instruction in 2 different ways. The first loads the A register, allowing 
us to get data into the CPU. The second way would tell the CPU what to do (such as how to 
load the ALU-y-input). So each instruction would either be a data-entry instruction or a work 
instruction. Notice that because we are in binary, we can represent both choices using a single 
bit. We can (arbitrarily) decide to designate one of its bits as an instruction-type bit. If we set it 
to 0, then we are putting data into A- a data-entry instruction. If our instruction-type bit is 1, it is 
a CPU work instruction. With that in mind, we can define our instruction more clearly.

CPU
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   Our Instruction Memory will contain hundreds or 
thousands of instructions. But each instruction will just 
be a 16-bit number at its core. So let’s design our 
instruction to do some real work. Recall that we 
decided we wanted the instruction to do 2 things (to 
meet Requirements I and II).

1) Read/Write data from/to memory (A, D, and M[A])
2) Tell the CPU to do some operation

   With these 2 options, we can designate the 15th bit, an instruction-type bit (ITB), to indicate 
which job we want the instruction to do. When that bit is 0, it  loads the A register. When it is 1, 
it performs some operation. We’ll call the first type an “@ 
instruction”. We can represent an @ instruction like this: 
   It tells the CPU to load the A register with the 15-bit 
number represented by v. (We’ll worry about loading D and 
M[A] later.) 
   The other type of instruction performs an operation or computation. We’ll call it a “c-
instruction”. The remaining 15 bits will specify the details of the operation. 
   Given two possible options based on the ITB, we know we are going to use a 16-bit 1:2 
Dmux, using ITB as the switch. We show 
all this in MOD 1.
   Now, let’s define how our c-instruction
works. First, remember that the c-instruc-
tion tells the CPU to perform some comp-
utation. So immediately we know that it will contain instructions for the ALU. 
   Also, remember the orange box (MOD b)? Our ALU y-input would take in either the A 
register or Memory[A]. This allowed us to perform computations on data we either just loaded 
into the A register or on memory at the address we loaded into A.
   Again, all we need to choose between the 2 possible 
sources is a single bit indicator. We’ll call it Y-Source Bit 
(YSB). So we can represent our c-instruction, so far, here: 
(with a couple unused bits.) As with the @-instruction, we 
know we are going to use YSB to select, this time between 2 inputs. That means another 16-
bit 2:1 MUX, which will take care of loading ALU-y-input (MOD b). 
   Let’s also add our 6 ALU Control Bits: zx, nx, zy, ny, f, no into our instruction. If we do all 
that, we can combine MOD b and MOD c into MOD 2, since we now can decode an instruction 
that tells us how to load the ALU y-input (MOD b) and what to calculate (MOD c).

xx x xx x x x x x xxxx xx
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   Let’s take a step back to assess what we have. Our 32K ROM module 
will contain hundreds and thousands of CPU instructions. Each 
instruction will reside in a sequential memory address. The CPU will start 
at the top of the instructions and then (using our as-yet unmade program 
counter and our clock pulse) work it’s way down, responding to each 
coded instructions. 

   Let’s visualize how this works so far. Let’s assume that we have 
somehow loaded D with 5. And we are currently at address 234 and 235 
of our ROM instruction memory (with a human readable version next to 
it). Let’s see see how what we have come up with so far interprets those 
2 instructions at 234 and 235. The first instruction (234) loads A with 2. 
The second instruction (235) tells the ALU to calculate D-A.
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000000   f(x,y)=0

010011   f(x,y)=x-y
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Out=D-A



   And now this allows us to load the D register as well as write to 
memory (M[A]). Remember the steps of our multiplication 
algorithm. We wanted to be able to:

I) Read/Write from memory locations (A, D, M[A])
II) Perform calculations.   

   We’ve already taken care of #2. And we already could (sort of, 
missing MOD a) load the A register from an @-instruction. Now we 
can load it and D and M[A] from an ALU operation. How?
   Look back at the ALU control-bit functions, specifically this:

   Notice that we can output whatever is coming in on ALU-y-input. 
So if we have A or M[A] (selected by YSB) coming in on that input, 
we can output that to D. 
   For example, let’s say we wanted to load D with 5 (0101). We 
could do the following:
We load A with 5. 
Next, we set YSB=0, so that ALU-y-input=A. We then set our ALU 
control bits to 110000 to output y-input. We then set destination to 
D (d2=1). 
   We can write data to M[A] the same way, using d3. In our 
multiplication algorithm (step 1), we wanted to set answer=0. . 
Looking back at our control-bits chart we see the ALU can output 0
when they are 101010. answer refers to a memory location, so 
YSB=1. If we assign answer to refer to M[1], we could do this:

   Finally, let’s get our MOD a figured out, now that we have both 
sources for loading A register defined. We want to load A when we 
have an @-instruction (ITB=0) OR when we have a c-instruction 
(ITB=1) AND the A destination bit (d1, bit 5) is 1. 
       We can write that out as: LOAD = NOT(ITB) + (ITB x d1)
We load in either v or ALU-out depending on ITB (using a 16 bit 
2:1 MUX with ITB as selector.)

MOD a

   So at this point we can tackle the question of how our c-instruction
can write the results of any computation 
it does to our 3 memory modules: A, D, 
and Memory[A]. If we look back at our
instruction, we notice we still have 6 bits on the very end (bits 5-0). Since we have 3 memory 
locations, we can use 1 bit to load each of them. Thus, we can write to all, none, or some 
combination of, our 3 memory modules (above).
   Let’s look back at our example c-instruction in 
our memory ROM address 235 (right). We can 
replace bits 5-3 (xxx) with our destination information. 
   For example, we can load D with the result of that 
operation. D  =  D-A:
   We could also load M[A] and A with that result. 

M[A],A= D-A:

 Doing this is actually pretty straightforward. We are basically saying we want to load A and/or D
and/or M[A] with the ALU-Out. So that means we route ALU-Out into D Data-In and M[A] Data-In. 
We also route ALU-Out into MOD a (our logic to load A register) since we haven’t figured out how to 
do that yet.) Finally, we note that we are ONLY writing when it is a c-instruction (and thus a 
computation has been done). We have to make sure that our destination-bits [5-3] load each of 
those 3 memory modules (A, D, M[A]) only when ITB=1. (If we didn’t do that, then if we had an 
@-instruction where v happened to have a 1 in bits [5-3] (as in the 1 in 0000 0000 0000 1000, for 
example) then one or more our memory modules would load (in that example, it would be M[A], that 
would be overwritten, even though we were just loading A with the number 0000 0000 0000 1000.) 
We take care of this by ANDing ITB with each of those destination-bits (activating them) and routing 
that into those modules’ Load inputs (MOD 3 and MOD a, which we still don’t know, yet).

   This scheme will do everything we want. We’ve hidden away MOD 1 and A register’s output to 
Memory[address], to make things more simple to see. When we have a c-instruction, the ALU will 
perform an operation and then will put the answer in up to all 3 locations: A, D, M[A]
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0000 0000 0000 0001
1xx1 1010 1000 1xxx   

A=1
M[A]=0 M[1]=0

@-instruction

c-instruction



  Before we create our final module and Program Counter, it would be good 
to understand how critical it is that our CPU be able to test its computations 
and then branch to other program steps. If we look at our multiplication 
algorithm, we see that until the counter is 0, we keep repeating the addition. 
The flow the program is based on that test. When the counter finally reaches 
0, then we stop and answer holds the product of a x b. That means that if we 
are multiplying 32,001 x 5,532, we will repeat the addition of 32,001 5,532 
times! The computer will obediently keep doing its test (does counter=0?) and 
if not, it will keep doing the addition. If the CPU didn’t have that ability then it 
would not be able to multiply at all (or do anything other than add and subtract.)

But let’s leave the realm of mathematics (as critical as that is to a computer’s 
    function) and see how testing and branching make games possible. A basic 
    flow of a game can be seen in a simple flowchart. In particular, notice Main 
    Game Logic | Scoring. Let’s say this is a game where you fire and if it hits a 
ship you get a point. How does the CPU know if your bomb hits the ship?

If you remember back to Screen Memory Maps, you’ll remember that 
drawing on the screen is done by simply writing 1's or 0's into a certain location 
in memory. Each memory bit in addresses 16384-24575 corresponds to one 
specific pixel, or dot, on the screen. A 1 there
makes it black, a 0 makes it white. So I can 
draw a bomb by first putting together the bit 
code for the image.

   Then I write that bit code (20,14,31,14,4) into my screen memory.
20 is stored in the top left 
row, address 16384. The next row of the image, 14, 
goes into the memory location for the 2nd row, far left, 
which is 16384+32=16416. The 3rd row of the image is 
31 and we put it in 16416+32=16448. And so on.
   So let’s saw we 
are drawing-erasing-
drawing our bomb 
across the screen. 

We have to calculate its new position. Once that is done, we 
can look at that location and see if something 
is already there. If so, we have a collision.
   Look at A. Notice we have a 1 going into a 0. 
No collision. So 1 AND 0= no collision. But in B, 
we have a 1 going into a 1, which means a 
collision. 1 AND 1=1. That tells us that we 
just have to AND our moving shape, row 
by row, with the data that is already in 
the screen memory at that location.
   This is a necessary function that we perform before 
we continue with the game animation and play.

Set answer to 0;
Set counter to b
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DONE
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    We can define this algorithm more explicitly like this. We define a 
counter we call i. Each 16-bit section of the Screen Memory is Screen 
Memory [i]. Screen Memory[0] would refer to the contents of 16384, 
the top left 16 bits of the screen. Adding 32 will drop us down one row, 
so Screen Memory[32] refers to 16416, etc. We define j to refer to each 
row of our shape. So Shape[0] in our bullet would be 20. Shape[1] 
would be 14. We only need to check the total rows of the Shape with 
what is already on the screen, so we also define a variable called total
that contains the number of rows in the shape. (In our bomb, row 
total=5.) Then we AND our Shape bit with the contents of our Screen at 
i and the result tells us if there is collision.  

Collision=Screen Memory[i] AND Shape[j]
   If any bit in Screen Memory[i] has a 1 that corresponds to a 1 in 
Shape[j], then the result of ANDing those 2 numbers together will be a 
number. It doesn’t matter what the number is, but as long as it is 
NOT ZERO it means COLLISION!
   Look again at B. We see the edge of the
ship’s nose (bit code 248) in our 
Screen Memory and the edge
of the  bomb (bit code 20). 
Notice how we AND them 
together. The result is 16. 
We have a Collision!
   We can generalize this.
   If Collision≠0, we have a hit and need to update our score by
1 point. We also don’t need to continue checking to see if a collision 
occurred, so we can end our collision check. From that point onward, 
our Main Game Logic would proceed onto its next step.
   If Collision=0, we have no collision for that row of screen memory. 
So we increase i and j and decrease 
the total number of rows to consider. 
Then we repeat the whole process 
until all the rows of the shape are 
done (total=0).
   From that point onward, our Main 
    Game Logic would proceed onto its 
      next step. It’s not the best and most
      efficient algorithm. But it does the 

job.
   The point of all this is to
make clear how important it is
that our CPU be able to test
and then jump, or branch, to 
another place in our instructions. 
   Branching is what gives 
computers such versatility and
power.
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   It is at this point that we come to the final 2 modules of our CPU to meet Requirements III and IV. 
First, as we saw, the ability to test for conditions and act on them is critical for our CPU. So we 
need a way to specify to our CPU what ALU-out conditions we are looking for. If those conditions 
are met then the CPU needs to be able to jump to other instructions. We will get to the jumping 
(and the Program Counter (PC)) in the last building project. 
   So how can we specify what sort of conditions to look for? In our two examples, we wanted to test 
whether or not counter=0 and whether 
Collision ≠ 0. So we have = and ≠ as possible 
tests. If we think about it, we could have also made
our counter test this: counter>0? Then we would 
loop as long as that was true. Once counter hit 0, 
we would be done. When we extend that, we can 
come up with 8 types of jump conditions (right):
   Notice that we have 3 different core conditions: <, =, >

But when we look at our ALU, we notice that we only have 2 flags: ng and zr.
ng means less than zero (<0). zr means the ALU computation equals zero (=0).
So we have 2 out of 3 of our core conditions. But if we think about it, we have our
3rd condition as well, that the ALU out is greater than zero (>0). How? Well, if we
have a number and we know that it is NOT less than 0 and NOT equal to 0,
then we know it MUST BE greater than 0. It must be a positive number. 
We can write and diagram this new flag, ps: 

ps=NOT(ng) AND NOT(zr)
   Now we have 3 flags to indicate what the ALU has output. So now we
need to tell the CPU what conditions we are looking for. To do this we are
going to use our CPU instruction. We’ve been able to use the c-instruction
to tell the ALU y-input where it needs to come from (A or M[A]), indicate what operation
the ALU should do (control-bits), and also where to store the result (destination bits). We can 
use our final 3 bits of the c-instruction to indicate the conditions necessary for a jump.

j1 will indicate negative, j2 will be zero, and j3 will 
be positive. So now we have 3 jump conditions 

(which we can group, like greater than or equal to) and 3 status flags (which can also be grouped). 
Now we just want to test if our jump-conditions match our ALU-out flags. We can do this by ANDing 
each possibility together. If our jump-conditions (j-) match our out flags, we jump. We can modify 
our chart above to reflect this requirement. 

                      For example. If we want to jump 
      when ALU-out=greater than OR equal 

to 0, we set our jump-bits (j1,j2,j3) to 
      011. j2=1 and j3=1, so we need to see 
      if the status of flags zr and ps

matches. If zr=1 OR ps=1 then we 
      know that ALU-out is greater than OR 

equal to 0. To see if they match the 
      jump-bits, we just AND each term 
      together: JUMP=(zr x j2) + (ps x j3)
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   So to review, we have our jump-bits indicating what condition we 
want to jump. Then we have our status flags. All we need to do is 
test each one of 6 possibilities (the first and last one we’ll talk about 
in a minute). If we want to jump on greater than 0, we take pos AND 
j3. If that is 1, then we jump. But if we want to jump on ALU-out being 
less than or equal to zero, we use the expression:

JUMP=(ng AND j1) OR (zr AND j2) 
   This works because If ALU-out is less than or equal to zero then 
either ng AND j1 is 1 OR zr AND j2 is 1. That output of 1 indicates 
that we have a jump.
   But notice the first and last type of condition: Null and Jump no 
matter what. Most of the time, we do NOT want the CPU to jump 
after performing some operation. Think back to our multiplication 
algorithm’s repeated addition: answer=answer+a. We weren’t 
jumping after that calculation. Instead we went on to next step. So for 
that case, we set our jump-bits all to 0. Thus, every single flag/jump 
bit test will fail and no jump will occur. That is what we want. In the 
same way, if we want a jump no matter what, setting all jump-bits to 1 
will ensure that at least 1 of our tests will succeed (ALU-out has to 
be negative, zero or positive) and a jump will occur.
   We can use the chart and create our test and jump circuit.

   This circuit will take our jump-bits and see if they match our ALU 
status flags. If so, it will output a JUMP=1. Otherwise, JUMP=0.

MOD 4

j3j2j1 pszr ng

JUMP

 j1   j2   j3 Command JUMP WHEN:

 0    0    0   Null ng x j1 + zr x j2 + pos x j3
 0    0    1 JGT  > pos x j3
 0    1    0 JEQ  = 0 zr x j2
 0    1    1 JGE  ≥ pos x j3 + zr x j2
1    0    0 JLT   < ng x j1
1    0    1 JNE  ≠ 0 ng x j1 + pos x j3
 1    1    0 JLE   ≤ ng x j1 + zr x j2
 1    1    1 JUMP ng x j1 + zr x j2 + pos x j3
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   So now we come to the engine of our CPU.
Looking right, we can see a program flow.
We have the instruction address on left. The
CPU basically follows the program like a 
train on railroad tracks, one instruction after 
the next. Sometimes the ‘train’ needs to 
‘switch tracks’, or jump, to another place on
the tracks. We have already created the
Test and Branch module to indicate when
that is to occur.
   But what is actually driving this train?
What is responsible for driving the CPU,
feeding it one instruction after the next? This component needs to be constantly 
changing, either chugging along onto the next section of track or jumping to a new 
place on the tracks. It is the Program Counter (PC).
   We can see that we will need two elements to build this Program Counter. It will need 
to contain the current place on the tracks the train is (the current address of the 
instruction the CPU is executing). It will also need to increment where it is on the tracks 
by 1. Thus, we will use a 16-Bit Register and a 
16-Bit Adder. We will take the stored address 
in the register and put it into the A-input of the 
adder. We’ll set the B-input to 0 and then the 
Carry-In to 1. This will add a 1 to whatever was in the register, provided our Load=1.   
    But what will give this its power is our looping the output of the adder back into the 
register. If you recall, we put a clock signal on our memory components, including the 
16-Bit Register. The clock goes 
high and low. So if Load=1, then 
every clock pulse will load the 
register with Q+1. We can 
depict that this way (right).
   So now our Program Counter will now constantly update the instruction address our 
CPU should follow next. So at time 0, the instruction at address 0 will be fed to the 
CPU, at time 1 it will be instruction 1, and so forth. Our engine is now pulling the train 
along the tracks. There are, however, 2 more behaviors we need our engine to 
perform. Looking again at our program flow at the top, we see that at times we need to 
jump to another section of ‘track’. The good thing is, that will be rather easy to do. We 
just need to Load the register with our new program location. In our example, at 
instruction 5, we need to load 42 into the register. From that point onward, the counter 
will increment (43,44,...). And again at instruction 47, we need to load the register with 
6, and the register will continue from that point onward (7,8,...). That loading also will 
allow us to reset, or restart, our program. If we load the register with 0, the engine will 
start again at the beginning of the program and proceed along the tracks.
   So, we have 3 different behaviors we want to be able to do at any given time: 
Increment, Load, and Reset. We will thus have 3 inputs into our Program Counter. 
When any of them is 1, we want our register to update, so we can say:

Register Load=Increment + Load + Reset

INST #
0 instr 0
1 instr 1
2 instr 2
3 calc
4 test?
5 jump 42
6 instr 6
7 instr 7

-
-

n restart

42 instr 42
43 instr 43
44 instr 44
45 calc
46 test?
47 jump 6

Increment
inst #

Load PC 
with 6

Load PC 
with 42

Increment
inst #

Increment
inst #

reset PC 
to 0

16 Bit Register

LD Q

0 1

16 Bit Adder

a Sumb Cin

   We will have to modify our design of the register and adder though, to allow 
for our desired behaviors. When Increment=1, we basically want the counter to 
behave as we have already drawn it, with the value 
in the register always incrementing. But if Load=1, 
we want to supersede any increment command 
and instead load the register with an inputted 
address. And if reset=1, we need to load 0 in the 
register, regardless of what the increment and load
are. We can put this in a chart to describe the 
behavior we want.
   Notice that we have 3 inputs for 8 possible combinations. That means a 8:1 
MUX. Now, of course, we don’t have 8 separate conditions, For example, in all 
4 possible combinations where reset=1, we are going to load 0 into the 

register. But we can use the 8:1 MUX 
anyway. This MUX will use 3 bits (inc, 
load, reset) to select what to put into 
into the register’s input. Let’s modify 
our chart to reflect that (left). Once we 
do that, we can draw our Program 
Counter circuit. (We will also include 
the Register Load logic from the 
bottom left.)

   This circuit will be the engine that we need. For every clock pulse, it will 
either increment, load, or reset, depending on those bits. The output will then 
go to the Program Instruction memory, and from there the CPU will act on it.
   Then the PC hooks into 
our CPU. Its input is from A. 
It will load that address if 
Jump conditions are met 
(from MOD 4). Inc defaults to true.
   Every clock pulse causes the engine to move along the ‘track’, pulling the 
CPU along.

reset load inc    Reg in
0 0 0 -
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

0 1 0             IN
0 1 1             IN

0 0 1          Q+1

reset load inc    Reg in   MUX chan
0 0 0 - -
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 0 0 0 e
1 0 1 0 f
1 1 0 0 g
1 1 1 0 h

0 1 0             IN c
0 1 1             IN d

0 0 1          Q+1 b

16 Bit Program Counter

16 Bit Register

LD Q

inc

reset

load

in

0

out
b

sel
0

a

out8:1 MUX
16 bit

c
d

sel
1sel

2

f
e

g
h

0 1

16 Bit Adder

a Sumb Cin

xx MHz

PC
inc

in out
L reset

1
JUMP

(from MOD 4)
16 Bit Register

A Outin

L

Reset Button

xx MHz

to Instruction
Memory

Register
Load
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Clock
Pulse

Q

Sum

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12



We are now finished with all the necessary modules and components of our CPU. We can put all of them together and our CPU is complete. A few notes, though. MOD 3
does not appear labeled because it just consisted of the AND gates that took ITB and d2 and d3 as inputs. Displaying a colored box would only clutter up the diagram 

more. Instead, the AND gates making up that module appear in purple. Keep in mind that the 16-bit instruction from our Instruction ROM is just 
16 bits of 1's and 0's. It is depicted twice only to emphasize that when the ITB=0, it is an @-instruction and the remaining bits, v, are considered 
a single 15-bit number. When ITB=1, however, it is considered a c-instruction and the CPU interprets the instruction differently using YSB, ALU-
control-bits, destination-bits, and jump-bits. Again, all that is changing is how we interpret that number and how we allow those individual bits 
to direct the data-flow. Also, though not shown, our clock signal also goes to all our memory and register modules (A,D,M, and ROM). Every 

clock pulse updates the Program Counter, which causes the Instruction Memory to spit out a new 
instruction for the CPU to execute.

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24k
Data

Memory
Address

Data Out

Data In

Load

Instruction 
Memory 

32K ROM
Address

Data Out

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

c6- c1 c2 c3 c4 d1 j2 j3j1c5- y1 d2 d3
vv v vv v v v v v vvvv v0

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

j3j2j1 pszrng

PC

inc

in

L reset

1

Reset 
Button

xx MHz

c6- c1 c2 c3 c4 d1 j2 j3j1c5- y1 d2 d3

vv v vv v v v v v vvvv v0

out

@-instruction
c-instruction

@-instruction

c-instruction
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   Now it’s time to actually put this CPU to work. We’ll return to our multiplication algorithm and 
proceed to convert it into code that will run on this CPU. First, we need to break down, in discrete 
steps, exactly how our CPU should carry out this algorithm in steps it can do. As we do this, you’ll 
notice that we’ll use the D register as a temporary storage, since A is going to be in constant use as a 
way to load data, memory addresses, and Program Counter addresses into our CPU. 

(The // means a comment.)
         Remember we have 2 numbers to multiply, a and b, an answer and counter

We’ll number each line of our code. We’ll also label our Step-2
and Step-5 as LOOP and END. In our code (lines 13 &15) we then will 
load A register with the line address where we see LOOP and END (6 &
15). We also can set our memory locations. a will be at address 0, b will 
be at address 1, answer will be at address 2, and counter will be stored 
at address 16. Now we have a completed multiplication program written 
in human readable machine instructions. All the memory and 
instruction locations have been resolved into actual addresses. Now 
that we have our program, we need to convert it into the machine code 
our CPU can recognize. We will need the following information to do the 
conversion: our instruction format (for both @- or c-instruction)

our ALU control bit table.

A=answer
M[A]=0

A=b
D=M[A] // D=b
A=counter
M[A]=D  // counter=b

A=a
D=M[A]           // D=a
A=answer
M[A]=M[A]+D // answer=answer+a

A=counter
M[A]=M[A]-1    // counter=counter-1

D=M[A]  // D=counter
A=Step-2
D; JNE // If D≠0 then Jump to 

Step-2

A=Step-5    
0; JMP //Jump to 

             Step-5

Set answer to 0;
Set counter to b

counter=0?

answer=answer+a

counter=counter-1

DONE

YES

NO

1.

2.

3.

4.

5.

We need to load in 2 pieces of 
data: 

1) the value of b
2) The address of our 

counter. 
So we are going to be using A
twice. 
   We use D as a temporary 
storage and put b in D. 
   Then we get the address to 
counter and put b’s value (stored 
in D) there.

Here, we put counter 
value (whose address 
is already in A) in D. 
We then load A with 
the program step we 
will need to jump to (in 
this case Step-2). 
Then we load D into 
the ALU. If D=0, then 
the program continues. 
If D is NOT 0, then we 
need to jump.  The 
CPU needs to Jump 
only when counter (D)
is Not Equal to 0 
(JNE). Otherwise, it 
keeps going.

Notice we again 
use D as a 
temporary storage 
for a. Then we add 
answer plus a and 
store that in 
answer.

The CPU cannot stop, 
so we put it in an 
infinite loop after we 
are done. Our answer 
is in answer.

1. answer=0

3. counter=
          counter-1

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

   If we take instruction  0, A=2, we see that it is merely an @-
instruction. So we set ITB=0 and then v=2 (binary 10).

0000 0000 0000 0010
   Instruction 1 is M[A]=0. That is a c-instruction so ITB=1. Our 
ALU control bits need to output a 0, which they can do with 
101010. Our YSB doesn’t matter since we are outputting 0, so 
we’ll leave it at 0. Our destination bits are for M[A] only, so d3=1. 
And we don’t jump, so all the jump bits are 0. So that means.

1110 1010 1000 1000
   Instruction 2 is pretty straightforward, so let’s jump to 9:
M[A]=M[A]+D. It is a c-instruction so ITB=1. Our y source is M, so 
YSB=1. We are doing a x+y calculation, so ALU bits are: 000010. 
We are writing to M, so d3=1. And our jump-bits are 0. Therefore:

1111 0000 1000 1000
   Let’s look at an instruction with a jump, 14: D; JNE. This is a c-
instruction, so ITB=1. We don’t care about the YSB, so we’ll leave 
it a 0. Our calculation requires we look at D, which is on the x-
input. To output x, we need ALU code: 001100. We aren’t writing 
to memory, so destination bits are 0. But we do jump ONLY when 
the output is NOT 0. So we set jump bits to 101 (neg or pos, but 
not zero.) Thus: 1110 0011 0000 0101

That’s tedious to do, however, so we can use a program (called 
an assembler) running on another computer, to do it for us. Here it 
is all done. 
   This machine language code
will multiply any 2 numbers we
put in RAM memory 0 and 1
and will place the result in RAM
memory 2.

no- zx nx zy ny A z pnf- y1 D M
vv v vv v v v v v vvvv v0 @-instruction

c-instruction

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

 counter=b
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2. answer=
         answer+a

5. done

4. counter=0? 
    No = Jump 
             Step-2

FORMAT

ALU Control Bits



Let’s see this CPU and program in action. We are going to look at a few of the instructions and 
see how things run. Imagine that, similar to how we’d take a cartridge and plug it into a 
Nintendo or Atari system, we plugged in a ROM with our multiplication program on it. We’ll 
begin with address 0 in our Instruction Memory ROM. The numbers we want to multiply, a and 
b are loaded into memory address 0 and 1. The answer will be in memory address 2.

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24 K RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

00 0 00 0 0 0 0 1 0000 00

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

00
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

00 0 0 0 0 0 0 0000 00 0 0

00 0 00 0 0 0 0 1 0000 00

out

Data Out

0

L

a
Addr

0 2
name

b 1 3
answer 2 0
counter 16 0

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

A=2
Human ReadableAddr 16-Bit Instructions

@-instruction

ROM
INSTRUCTION 

MEMORY 0 0000000000000010

0

2

0

1

1

2

2

2
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MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24 K RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

01 0 11 0 1 0 0 0 0011 01

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

00
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

01 1 0 1 0 0 0 0011 01 0 1

00 0 00 0 0 0 0 0 0000 00

out

Data Out

0

L

a
Addr

0 2
name

b 1 3

counter 16 0

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

M[A]=0
Human ReadableAddr 16-Bit InstructionsROM

INSTRUCTION 
MEMORY

1 1110101010001000 c-instruction

0answer

0

2

2

2

0

2

101010 f(x,y)=0

0

2
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Instruction 2 is identical to Instruction 0. It simply loads A register with the Memory Address of
b. Let’s assume we’ve done that. A register contains the Memory Address of b, 1. Now let’s go 
on to Instruction 3, which places the value b in D register.

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24K  RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

01 1 01 1 0 0 0 0 0001 11

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

00
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

01 1 1 0 0 0 0 0001 11 1 0

00 0 00 0 0 0 0 0 0000 00

out

Data Out

0

L

a
Addr

0 2
name

answer 2 0
counter 16 0

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

D=M[A]
Human ReadableAddr 16-Bit InstructionsROM

INSTRUCTION 
MEMORY

3 1111110000010000

3

1

3

4

c-instruction

3

4

110000 f(x,y)=y

31

b 1

3

3
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Instruction 4 is identical to Instruction 0. It simply loads A register with the Memory Address of
counter. Let’s assume we’ve done that. A register contains the Memory Address of counter, 16. 
Now let’s go on to Instruction 5, which places the value  in D register, b, into the Memory 
Address of counter. 

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24 K RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

01 0 10 0 1 1 0 0 0001 01

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

00
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

01 0 0 1 1 0 0 0001 01 0 1

00 0 00 0 0 0 0 0 0000 00

out

Data Out

0

L

a
Addr

0 2
name

b 1 3
answer 2 0
counter 16 3

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

M[A]=D
Human ReadableAddr16-Bit Instructions

c-instruction
ROM

INSTRUCTION 
MEMORY

5 1110001100001000

3

16

3

6

16

3

6

001100 f(x,y)=x

3
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Let’s jump to instruction 9. We will assume that instructions 6-8 have been completed. D
contains the value of Memory Location 0, which is a. A now contains the address of our 
answer, 2. Our next instruction will add what is in answer to a and put the result back in 
answer.

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24 K RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

01 0 10 0 0 0 0 0 0011 11

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

00
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

01 0 0 0 0 0 0 0011 11 0 1

00 0 00 0 0 0 0 0 0000 00

out

Data Out

0

L

a
Addr

0 2
name

b 1 3

counter 16 3

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

M[A]=M[A]+D
Human ReadableAddr 16-Bit Instructions

c-instruction
ROM

INSTRUCTION 
MEMORY

9 1111000010001000

2

2

10

10

000010 f(x,y)=x+y

2

2 0

0

0

2
2

0answer 2 2
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Let’s jump to instruction 14, so we can see a jump occur. We assume instructions 11-13 have 
completed. counter (Memory Address 16) now contains 2. D contains of the contents of 
counter, also a 2. And we have loaded A with the Instruction Address we will need jump to if 
the jump conditions are met.

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24 K RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

01 0 00 0 1 1 0 0 1101 01

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

01
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

01 0 0 1 1 0 0 1101 01 0 0

00 0 00 0 0 0 0 0 0000 00

out

Data Out

1

L

a
Addr

0 2
name

b 1 3

counter 16 2

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

D; JNE
Human ReadableAddr 16-Bit Instructions

c-instruction
ROM

INSTRUCTION 
MEMORY

14 1110001100000101

2

6

6

6

001100 f(x,y)=x

2

2

2answer 2

6
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Let’s again look at instruction 14. We assume instructions 11-13 have completed. Let’s assume 
we have looped a few times. answer contains a 6 and counter (Memory Address 16) now 
contains 0. D contains of the contents of counter, also a 0. We thus should expect that our 
jump conditions will fail (which it does. PC just increments 14 to 15 and that is the next 
instruction to execute.) A is loaded with the Instruction Address we would usually need.

MOD 2

MOD a

MOD 1

bsel

a
in

16 bit
1:2 

DMUX 16 Bit Register
D Outin

L

16 Bit Register
A Outin

L

24 K RAM Memory
Address

Data Out

Data In Load

Instruction 
Memory 

Address

zx nx zy ny f noControl Bits

out

x

y
Status Flags

ALU

zr ng

01 0 00 0 1 1 0 0 1101 01

sel
out

16 bit
2:1 

MUX

a

b

sel
out

16 bit
2:1 

MUX

a

b

MOD 4

01
pszrng

PC

inc

in

reset
1Reset 

Button

xx MHz

01 0 0 1 1 0 0 1101 01 0 0

00 0 00 0 0 0 0 0 0000 00

out

Data Out

1

L

a
Addr

0 2
name

b 1 3

counter 16 0

0 A=2
1 M[A]=0
2 A=1
3 D=M[A]
4 A=16
5 M[A]=D
6 (LOOP) A=0
7 D=M[A]
8 A=2
9 M[A]=M[A]+D
10 A=16
11 M[A]=M[A]-1
12 D=M[A]
13 A=6
14 D; JNE
15 (END) A=15
16 0;JMP

0
1
2
3
4
5
6
7
8

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010

9
10
11
12
13
14
15
16

1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

D; JNE
Human ReadableAddr 16-Bit Instructions

c-instruction
ROM

INSTRUCTION 
MEMORY

14 1110001100000101

0

6

15

15

001100 f(x,y)=x

0

0

6answer 2

6
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   So now that we have our CPU built, we can treat it as a single unit. We will label our input/output lines for 
a reset button, the RAM Memory Address (for reading and writing from/to specific 
locations), RAM Memory Input, RAM Memory Output, RAM Memory Load, Instruction
Input, Program Counter Output, and a Clock. We can then put our entire computer 
together, as well as a keyboard, screen, and ROM Cartridge (Instruction Memory).

        At this point we can step back and observe a couple of things about our computer. 
1) It is theoretical (which is how we wanted it. We wanted to focus on the logical design 
itself). To physically build this, you’d have to transform the schematics we’ve designed 
into actual electrical engineering plans. To illustrate the difference, here is an image 
of what a NOT gate schematic actually looks like implemented using transistors and
resistors. (Physical implementation will also change component design to deal with other real world 
issues.)
2) Compared to modern computers, it is slow, has little memory, and is not very easy to use. Of course, 
ease of use depends on the software written for it. Obviously, we would not want to have to interact with 
this machine by poking code into binary memory. We’d like something more user friendly. Modern 
computers are very easy to use because software has been written to take care of all the behind the 
scenes requirements. The software is called an Operating System (OS)- a large group of applications that 
take care of all the low level stuff. When you type in your word processor (WP), the CPU receives an 
interrupt notification. The OS reads the keyboard memory and gets your letter. It passes that letter on to 
the WP, which sees it’s an actual keystroke (as opposed to a control command like ctrl-P) and tells the OS 
to draw it. The OS receives that request and looks up the image bit-code for that letter and pokes those 
bits into the appropriate screen memory. Other code in your word processor will spell check by comparison 
with an in-memory dictionary. If not, it places a squiggly red line underneath the word by asking the OS to 
draw it at a specific place on the screen. Clearly, to do all that will require a lot of speed, memory and 
software working together.
   Our computer, despite have 24K memory and the ability to process 16-bits of information at a time, is 
very similar to the computers of the mid 70's. The computer that really jump-started personal computing 
was the Altair 8800. It could only handle 8-bits of information at a time and had 1K, 4K or 8K memory.

The 8800 used an Intel
8080 CPU chip (rough  
schematic left.) Its 
architecture is far more 
complicated than ours. We 
didn’t do anything to 
optimize performance or 
data-flow. Normally, after 
each component is 
designed, it is studied and 

redesigned to run faster and/or with fewer parts. Our 16-Bit 
Adder, would be replaced with a 16-Bit carry look ahead 
adder. Data latches have some flaws and would be replaced 
by data flip-flops. The existing memory banks have some 
unnecessary components, as does the ALU. And so on. 
   The Altair 8080 could be bought as a kit or fully 
assembled. Programs were entered using the switches on
the front of the case and output was “read” using the LEDs. 
Programs and data could also be loaded using paper, or 
punch tape, if you could afford the reader. Otherwise you 
had to reenter the program yourself each time it started.

   The Apple I, designed by 
Steve Wozniak, was much 
more user friendly than the 
Altair. From there, he 
engineered the Apple II 
which made a personal 
computer appealing to a 

much larger audience. A tape recorder, and later a disk 
drive, allowed programs and personal data to be stored. It 
and the Commodore 64 were most responsible for setting 
off the personal computing revolution- and our modern 
world!

   But at its core, all computers 
use the same principles as ours. 
Their advanced capabilities come 
from more memory, faster 
processors, better architecture and 
an advanced operating system.

COMPUTERReset 
Button

24k 
Data

Memory
Address

Data Out

Data In

Load

Screen
Keyboard

Instruction 
Memory 

32K ROM
Address

Data Out

CPU

RAM Input

Reset

RAM output

RAM 
Address

RAM Load
Program
Counter
Output

Instruction
Input

xx MHz
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Screen shots of the Compiler and Assembler
   At this point, we are done. Our computer is complete. From here on out, any further development will be 
done by writing software for the CPU. But if you look at our multiplication program, you recall it wasn’t very 
easy to write. We had to directly manipulate the registers and specific memory locations. It meant we had 
to know the CPU’s architecture. If we designed all the necessary programs (drawing text on screen, 
responding to keyboard input, etc) that way, we’d have to make sure that they played nice together- not 
overwriting each other or any memory storage they each might be using. It would take a lot of work.
   Computer designers therefore came up with “Higher Level” languages that allow the programmer to 
concentrate on the task at hand (creating the programs) without having to worry about the hardware 
details. In the same way that we treated our logic gates as black boxes that performed a function (however 
they worked), these high level languages allow the programmer to not worry about how the CPU will 
actually carry out its instructions. He does not have to worry about the memory locations of counter or
answer; he doesn’t need to make sure A is loaded with a jump address before doing a test, or what that
address might be.
   Instead, the programmer just writes his program in language more akin to human thought (with its own 
grammar and vocabulary) and a compiler program 
translates that into an intermediate language and 
then into assembly language. Then an assembler
translates that into the CPU’s machine language 
(made up of 1s and 0s).

   So our first step would be to (i) design and imple-
ment an ASSEMBLER that turns assembly language
into machine language, resolving memory locations
(like counter and a) and jump locations (like LOOP) 

into actual numbers (which we did by hand earlier.) We’d write it in a high-level   
language on another computer. (ii) Then we would design a COMPILER to 
convert an intermediate language into that assembly language. (iii) Then we’d 
expand our compiler to convert the higher level language into that intermediate 
language. Now we can write software more easily. We would proceed to write our 
operating system in that easier higher-level language. Libraries of programs would 
need to be written to take care of things like printing characters to the screen, 

drawing primitive shapes (points, lines, circles) to any coordinate on the screen, perform mathematical 
functions, manipulate text, manage memory arrays, read input from the keyboard, and handle the 
execution of programs and any errors 
they generate.
    But if we do all that, then we will have an 
environment that will let us create software to run 
on our computer.

   So there it is, our completed computer. It’s been 
a long journey, but it was worth it to build it with 
our own hands.
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System Calls

User Interface

ArrayMath String OutputScreen Keyboard MemorySystem

O
pe

ra
tin

g
S

ys
te

m

Word
Processor

Computer
game

Spreadsheet Graphics 
Application

Financial 
Planning

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0000000000000010
1110101010001000
0000000000000001
1111110000010000
0000000000010000
1110001100001000
0000000000000000
1111110000010000
0000000000000010
1111000010001000
0000000000010000
1111110010001000
1111110000010000
0000000000000110
1110001100000101
0000000000001111
1110101010000111

function multiply(a,b)
          push 0
          pop answer
          push b
          pop counter

label LOOP
          push counter
          push 0
          eq
          if-goto END
          push answer
          push a
          add
          pop answer
          push counter
          push 1
          sub
          pop counter
          goto LOOP

label END
          push answer
          return

int multiply(int a, int b) {
          int answer=0
          int counter;

for(counter=b; counter != 0; counter=counter-1){
answer=answer+a;

}
          return answer;
}

0 A=answer
1 M[A]=0
2 A=b
3 D=M[A]
4 A=counter
5 M[A]=D
6  (LOOP) A=a
7 D=M[A]
8 A=answer
9 M[A]=M[A]+D
10 A=counter
11 M[A]=M[A]-1
12 D=M[A]
13 A=LOOP
14 D; JNE
15  (END) A=END
16 0;JMP

High Level 
Language:

Java, C#, etc

Intermediate 
Language

Assembly 
Language Machine 

Language

(i)
(ii)

(iii) Sample graphics program written for our CPU


	00-introduction.pdf
	01-Primitive circuits
	02-primitives
	03-digital designs
	04-adv digital designs
	05-MUXes
	06-demuxes
	07-multibit demux-muxes
	08-binary
	09-binary addition
	10-advanced adders
	11-alu 1
	12-alu 2
	13-ALU
	14-sr latch
	15- advanced memory
	16-memory banks
	17-CPU-1
	18-CPU-2
	19-comp memory
	20-CPU-3
	21-CPU-4
	22-CPU-5
	23-cpu-5a
	24-CPU-6
	25-pc
	26-cpu
	27-programming
	28-prog1
	29-prog2
	30-prog3
	31-prog4
	32-prog5
	33-prog6
	34-prog7
	35-together
	36-the end

